Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 81217 by M±th+et£s last updated on 10/Feb/20

Answered by mind is power last updated on 10/Feb/20

i will poste all solution later!  for 2nd Somme mistacks  i found  f(x)=∫((√(tan(2x)))/(sin(x)))dx=2(√(2.tan(x))).    _2 F_1 ((1/2),(1/8),(9/8);tan^4 (x))+c  tan(2x)=((2tan(x))/(1−tan^2 (x))), ∀x∈[0,(π/4)[  sin(x)=(√(sin^2 (x))),=(√((tan^2 (x))/(1+tan^2 (x))))  ∫((√(tan(2x)))/(sin(x)))dx=∫(√((2tan(x))/(1−tan^2 (x)))).(√((1+tan^2 (x))/(tan^2 (x))))dx  =∫(√(2/(tan(x)))).(1+tan^2 (x)).(dx/(√(1−tan^4 (x))))  (1/(√(1−x^2 )))=Σ_(n≥0) (((2n!))/(2^(2n) .(n!)^2 ))x^(2n)   ⇒(1/(√(1−tan^4 (x))))=Σ_(n≥0) (((2n)!)/(2^(2n) (n!)^2 ))tg^(4n) (x)  ∫(√(2/(tan(x))))(1+tan^2 (x)).(dx/(√(1−tan^4 (x))))  =∫Σ_(n=0) ^(+∞) (((2n)!)/(2^(2n) (n!)^2 )).tg^(4n−(1/2)) (x)(1+tg^2 (x))(√2)dx  =Σ_(n=0) ^(+∞) (((2n)!)/(2^(2n) (n!)^2 ))(√2)∫tg^(4n−(1/2)) (x)(1+tg^2 (x))dx  =Σ_(n=0) ^(+∞) (((2n)!)/(2^(2n) (n!)^2 ))(√2).((tg^(4n+(1/2)) )/(4n+(1/2)))+c=2(√2)Σ_(n≥0) (((2n)!tg^(4n+(1/2)) )/(2^(2n) (n!)^2 (8n+1)))+c    =2(√2).(√(tg(x))).Σ_(n≥0) (((2n)!!.tg^(4n) (x))/(2^(2n) (n!)^2 (8n+1)))+c  (2n)!=(2n−1)!!.2^n .n!  f(x)=2(√(2tan(x))) (1+Σ_(n≥1) (((2n−1)!!.2^n n!)/(2^(2n) .(n!)^2 (8n+1))).(tg^4 (x))^n )+c  =2(√(2tan(x))) (1+Σ_(n≥1) (((2n−1)!!)/2^n ).(1/(8n+1)).(((tg^4 (x))^n )/(n!)))+c  (((2n−1)!!)/2^n )=((1/2))......((1/2)+n−1)  8n+1=8(n+(9/8)−1)⇔  (1/(8n+1))=(((1/8).......((1/8)+n−1))/((9/8)........((9/8)+n−1)))  ⇒f(x)=2(√(2tan(x)))(1+Σ_(n≥1) ((Π_(k=1) ^n ((1/2)+k−1)((1/8)+k−1))/(Π_(k=1) ^n ((9/8)+k−1))).(((tg^4 (x))^n )/(n!)))+c  1+Σ_(n≥1) (((a_n )(b_n ))/c_n ).(x^n /(n!))=  _2 F_1 (a,b,c;x)  f(x)=2(√(2tan(x)))  _2 F_1 ((1/2),(1/8),(9/8);tg^4 (x))+c  ,c canstante  ∫((√(tan(2x)))/(sin(x)))dx=2(√(2tan(x))) 2F1((1/2),(1/8),(9/8);tg^4 (x))+c

iwillposteallsolutionlater!for2ndSommemistacksifoundf(x)=tan(2x)sin(x)dx=22.tan(x).2F1(12,18,98;tan4(x))+ctan(2x)=2tan(x)1tan2(x),x[0,π4[sin(x)=sin2(x),=tan2(x)1+tan2(x)tan(2x)sin(x)dx=2tan(x)1tan2(x).1+tan2(x)tan2(x)dx=2tan(x).(1+tan2(x)).dx1tan4(x)11x2=n0(2n!)22n.(n!)2x2n11tan4(x)=n0(2n)!22n(n!)2tg4n(x)2tan(x)(1+tan2(x)).dx1tan4(x)=+n=0(2n)!22n(n!)2.tg4n12(x)(1+tg2(x))2dx=+n=0(2n)!22n(n!)22tg4n12(x)(1+tg2(x))dx=+n=0(2n)!22n(n!)22.tg4n+124n+12+c=22n0(2n)!tg4n+1222n(n!)2(8n+1)+c=22.tg(x).n0(2n)!!.tg4n(x)22n(n!)2(8n+1)+c(2n)!=(2n1)!!.2n.n!f(x)=22tan(x)(1+n1(2n1)!!.2nn!22n.(n!)2(8n+1).(tg4(x))n)+c=22tan(x)(1+n1(2n1)!!2n.18n+1.(tg4(x))nn!)+c(2n1)!!2n=(12)......(12+n1)8n+1=8(n+981)18n+1=18.......(18+n1)98........(98+n1)f(x)=22tan(x)(1+n1nk=1(12+k1)(18+k1)nk=1(98+k1).(tg4(x))nn!)+c1+n1(an)(bn)cn.xnn!=2F1(a,b,c;x)f(x)=22tan(x)2F1(12,18,98;tg4(x))+c,ccanstantetan(2x)sin(x)dx=22tan(x)2F1(12,18,98;tg4(x))+c

Commented by M±th+et£s last updated on 10/Feb/20

great sir god bless you

greatsirgodblessyou

Commented by mind is power last updated on 10/Feb/20

thank you sir for posting  somm hypergeometric Function

thankyousirforpostingsommhypergeometricFunction

Answered by M±th+et£s last updated on 11/Feb/20

Commented by mind is power last updated on 12/Feb/20

nice

nice

Terms of Service

Privacy Policy

Contact: info@tinkutara.com