Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 81242 by panky0214 last updated on 10/Feb/20

Commented by mr W last updated on 10/Feb/20

i got maximum=((120)/(49))≈2.45

$${i}\:{got}\:{maximum}=\frac{\mathrm{120}}{\mathrm{49}}\approx\mathrm{2}.\mathrm{45} \\ $$

Commented by mr W last updated on 10/Feb/20

is the answer correct?

$${is}\:{the}\:{answer}\:{correct}? \\ $$

Commented by panky0214 last updated on 10/Feb/20

im sorry dont have the answer

$${im}\:{sorry}\:{dont}\:{have}\:{the}\:{answer}\: \\ $$

Answered by mr W last updated on 10/Feb/20

we have ten men, their names are  cos x_k  (k=1,2,...,10), or M_k  for short.  each of them can carry a number from  −1 to +1.  the sum of these numbers is zero. if  n men carry positive numbers whose  sum is T, then the other 10−n men  carry negative numbers whose sum  is −T.  Σ_(k=1) ^n M_k =T  Σ_(k=n+1) ^(10) M_k =−T  now the numbers will be cubed. the  positive numbers remain positive  and the negative numbers remain  negative. the sum of all is S.  S=Σ_(k=1) ^(10) cos^3  x_k =S_P +S_N   S_P =Σ_(k=1) ^n cos^3  x_k =Σ_(k=1) ^n M_k ^3   S_N =Σ_(k=n+1) ^(10) cos^3  x_k =Σ_(k=n+1) ^(10) M_k ^3   such that S is maximum, S_P  should  be as great as possible and S_N  as small  as possible.  since Σ_(k=1) ^n M_k =T, the maximum of    Σ_(k=1) ^n M_k ^3  is when M_k  are equal and =(T/n).  S_(P,max) =n((T/n))^3   similarly  S_(N,min) =−(10−n)((T/(10−n)))^3   ⇒S_(max) =n((T/n))^3 −(10−n)((T/(10−n)))^3   let T=np with p≤1  ⇒S_(max) =n[1−(n^2 /((10−n)^2 ))]p^3   we see p=1 makes S_(max)  maximum.  ⇒S_(max) =n[1−(n^2 /((10−n)^2 ))]  n=3 makes S_(max)  maximum.  ⇒S_(max) =3[1−(3^2 /7^2 )]=((120)/(49))≈2.45  that means Σ_(k=1) ^(10) cos^3  x_k  reaches its  maximum ((120)/(49)) when three from cos x_k   take the value 1 for each and the other  seven take −(3/7) for each.

$${we}\:{have}\:{ten}\:{men},\:{their}\:{names}\:{are} \\ $$$$\mathrm{cos}\:{x}_{{k}} \:\left({k}=\mathrm{1},\mathrm{2},...,\mathrm{10}\right),\:{or}\:{M}_{{k}} \:{for}\:{short}. \\ $$$${each}\:{of}\:{them}\:{can}\:{carry}\:{a}\:{number}\:{from} \\ $$$$−\mathrm{1}\:{to}\:+\mathrm{1}. \\ $$$${the}\:{sum}\:{of}\:{these}\:{numbers}\:{is}\:{zero}.\:{if} \\ $$$${n}\:{men}\:{carry}\:{positive}\:{numbers}\:{whose} \\ $$$${sum}\:{is}\:{T},\:{then}\:{the}\:{other}\:\mathrm{10}−{n}\:{men} \\ $$$${carry}\:{negative}\:{numbers}\:{whose}\:{sum} \\ $$$${is}\:−{T}. \\ $$$$\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{M}_{{k}} ={T} \\ $$$$\underset{{k}={n}+\mathrm{1}} {\overset{\mathrm{10}} {\sum}}{M}_{{k}} =−{T} \\ $$$${now}\:{the}\:{numbers}\:{will}\:{be}\:{cubed}.\:{the} \\ $$$${positive}\:{numbers}\:{remain}\:{positive} \\ $$$${and}\:{the}\:{negative}\:{numbers}\:{remain} \\ $$$${negative}.\:{the}\:{sum}\:{of}\:{all}\:{is}\:{S}. \\ $$$${S}=\underset{{k}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\mathrm{cos}^{\mathrm{3}} \:{x}_{{k}} ={S}_{{P}} +{S}_{{N}} \\ $$$${S}_{{P}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}\mathrm{cos}^{\mathrm{3}} \:{x}_{{k}} =\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{M}_{{k}} ^{\mathrm{3}} \\ $$$${S}_{{N}} =\underset{{k}={n}+\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\mathrm{cos}^{\mathrm{3}} \:{x}_{{k}} =\underset{{k}={n}+\mathrm{1}} {\overset{\mathrm{10}} {\sum}}{M}_{{k}} ^{\mathrm{3}} \\ $$$${such}\:{that}\:{S}\:{is}\:{maximum},\:{S}_{{P}} \:{should} \\ $$$${be}\:{as}\:{great}\:{as}\:{possible}\:{and}\:{S}_{{N}} \:{as}\:{small} \\ $$$${as}\:{possible}. \\ $$$${since}\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{M}_{{k}} ={T},\:{the}\:{maximum}\:{of}\: \\ $$$$\:\underset{{k}=\mathrm{1}} {\overset{{n}} {\sum}}{M}_{{k}} ^{\mathrm{3}} \:{is}\:{when}\:{M}_{{k}} \:{are}\:{equal}\:{and}\:=\frac{{T}}{{n}}. \\ $$$${S}_{{P},{max}} ={n}\left(\frac{{T}}{{n}}\right)^{\mathrm{3}} \\ $$$${similarly} \\ $$$${S}_{{N},{min}} =−\left(\mathrm{10}−{n}\right)\left(\frac{{T}}{\mathrm{10}−{n}}\right)^{\mathrm{3}} \\ $$$$\Rightarrow{S}_{{max}} ={n}\left(\frac{{T}}{{n}}\right)^{\mathrm{3}} −\left(\mathrm{10}−{n}\right)\left(\frac{{T}}{\mathrm{10}−{n}}\right)^{\mathrm{3}} \\ $$$${let}\:{T}={np}\:{with}\:{p}\leqslant\mathrm{1} \\ $$$$\Rightarrow{S}_{{max}} ={n}\left[\mathrm{1}−\frac{{n}^{\mathrm{2}} }{\left(\mathrm{10}−{n}\right)^{\mathrm{2}} }\right]{p}^{\mathrm{3}} \\ $$$${we}\:{see}\:{p}=\mathrm{1}\:{makes}\:{S}_{{max}} \:{maximum}. \\ $$$$\Rightarrow{S}_{{max}} ={n}\left[\mathrm{1}−\frac{{n}^{\mathrm{2}} }{\left(\mathrm{10}−{n}\right)^{\mathrm{2}} }\right] \\ $$$${n}=\mathrm{3}\:{makes}\:{S}_{{max}} \:{maximum}. \\ $$$$\Rightarrow{S}_{{max}} =\mathrm{3}\left[\mathrm{1}−\frac{\mathrm{3}^{\mathrm{2}} }{\mathrm{7}^{\mathrm{2}} }\right]=\frac{\mathrm{120}}{\mathrm{49}}\approx\mathrm{2}.\mathrm{45} \\ $$$${that}\:{means}\:\underset{{k}=\mathrm{1}} {\overset{\mathrm{10}} {\sum}}\mathrm{cos}^{\mathrm{3}} \:{x}_{{k}} \:{reaches}\:{its} \\ $$$${maximum}\:\frac{\mathrm{120}}{\mathrm{49}}\:{when}\:{three}\:{from}\:\mathrm{cos}\:{x}_{{k}} \\ $$$${take}\:{the}\:{value}\:\mathrm{1}\:{for}\:{each}\:{and}\:{the}\:{other} \\ $$$${seven}\:{take}\:−\frac{\mathrm{3}}{\mathrm{7}}\:{for}\:{each}. \\ $$

Commented by mr W last updated on 10/Feb/20

if we had 100 times cos x_k , then  ⇒S_(max) =n[1−(n^2 /((100−n)^2 ))] with n=33  ⇒S_(max) =33[1−((33^2 )/(67^2 ))]=((112200)/(4489))≈24.994

$${if}\:{we}\:{had}\:\mathrm{100}\:{times}\:\mathrm{cos}\:{x}_{{k}} ,\:{then} \\ $$$$\Rightarrow{S}_{{max}} ={n}\left[\mathrm{1}−\frac{{n}^{\mathrm{2}} }{\left(\mathrm{100}−{n}\right)^{\mathrm{2}} }\right]\:{with}\:{n}=\mathrm{33} \\ $$$$\Rightarrow{S}_{{max}} =\mathrm{33}\left[\mathrm{1}−\frac{\mathrm{33}^{\mathrm{2}} }{\mathrm{67}^{\mathrm{2}} }\right]=\frac{\mathrm{112200}}{\mathrm{4489}}\approx\mathrm{24}.\mathrm{994} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com