Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 81286 by jagoll last updated on 11/Feb/20

what is   tan ((3π)/(11)) + 4sin ((2π)/(11)) ?

$${what}\:{is}\: \\ $$$$\mathrm{tan}\:\frac{\mathrm{3}\pi}{\mathrm{11}}\:+\:\mathrm{4sin}\:\frac{\mathrm{2}\pi}{\mathrm{11}}\:? \\ $$

Answered by MJS last updated on 11/Feb/20

a strange way to solve this  sin α =((e^(iα) −e^(−iα) )/(2i)); cos α =((e^(iα) +e^(−iα) )/2)  let e^(i((3π)/(11))) =u^(3/2) ∧e^(i((2π)/(11))) =u  (((u^(3/2) −u^(−(3/2)) )/(2i))/((u^(3/2) +u^(−(3/2)) )/2))+4((u−u^(−1) )/(2i))=t>0  −i((2u^5 +u^4 −2u^3 +2u^2 −u−2)/(u^4 +u))=t  squaring this ⇒  −(((u−1)^2 (2u^4 +3u^3 +u^2 +3u+2)^2 )/(u^2 (u+1)^2 (u^2 −u+1)^2 ))=t^2   ⇒  4u^(10) +4u^9 +(t^2 −7)u^8 +4u^7 +4u^6 +2(t^2 −9)u^5 +4u^4 +4u^3 +(t^2 −7)u^2 +4u+4=0  now if t^2 −7=2(t^2 −9)=4 this would be nice  ⇒ t=±(√(11)) but we know that t>0 ⇒ t=(√(11))  ⇒  u^(10) +u^9 +u^8 +u^7 +u^6 +u^5 +u^4 +u^3 +u^2 +u+1=0  multiplicate with (u−1)  ⇒  u^(11) −1=0 ⇒ u=1 ∨ u=e^(i((nπ)/(11)))  with n∈N∧1≤n≤10  but u=e^(i((2π)/(11)))  which indeed is a solution and  u^(3/2) =e^(i((3π)/(11)))  which is also a solution  ⇒  t=(√(11))

$$\mathrm{a}\:\mathrm{strange}\:\mathrm{way}\:\mathrm{to}\:\mathrm{solve}\:\mathrm{this} \\ $$$$\mathrm{sin}\:\alpha\:=\frac{\mathrm{e}^{\mathrm{i}\alpha} −\mathrm{e}^{−\mathrm{i}\alpha} }{\mathrm{2i}};\:\mathrm{cos}\:\alpha\:=\frac{\mathrm{e}^{\mathrm{i}\alpha} +\mathrm{e}^{−\mathrm{i}\alpha} }{\mathrm{2}} \\ $$$$\mathrm{let}\:\mathrm{e}^{\mathrm{i}\frac{\mathrm{3}\pi}{\mathrm{11}}} ={u}^{\frac{\mathrm{3}}{\mathrm{2}}} \wedge\mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi}{\mathrm{11}}} ={u} \\ $$$$\frac{\frac{{u}^{\frac{\mathrm{3}}{\mathrm{2}}} −{u}^{−\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{2i}}}{\frac{{u}^{\frac{\mathrm{3}}{\mathrm{2}}} +{u}^{−\frac{\mathrm{3}}{\mathrm{2}}} }{\mathrm{2}}}+\mathrm{4}\frac{{u}−{u}^{−\mathrm{1}} }{\mathrm{2i}}={t}>\mathrm{0} \\ $$$$−\mathrm{i}\frac{\mathrm{2}{u}^{\mathrm{5}} +{u}^{\mathrm{4}} −\mathrm{2}{u}^{\mathrm{3}} +\mathrm{2}{u}^{\mathrm{2}} −{u}−\mathrm{2}}{{u}^{\mathrm{4}} +{u}}={t} \\ $$$$\mathrm{squaring}\:\mathrm{this}\:\Rightarrow \\ $$$$−\frac{\left({u}−\mathrm{1}\right)^{\mathrm{2}} \left(\mathrm{2}{u}^{\mathrm{4}} +\mathrm{3}{u}^{\mathrm{3}} +{u}^{\mathrm{2}} +\mathrm{3}{u}+\mathrm{2}\right)^{\mathrm{2}} }{{u}^{\mathrm{2}} \left({u}+\mathrm{1}\right)^{\mathrm{2}} \left({u}^{\mathrm{2}} −{u}+\mathrm{1}\right)^{\mathrm{2}} }={t}^{\mathrm{2}} \\ $$$$\Rightarrow \\ $$$$\mathrm{4}{u}^{\mathrm{10}} +\mathrm{4}{u}^{\mathrm{9}} +\left({t}^{\mathrm{2}} −\mathrm{7}\right){u}^{\mathrm{8}} +\mathrm{4}{u}^{\mathrm{7}} +\mathrm{4}{u}^{\mathrm{6}} +\mathrm{2}\left({t}^{\mathrm{2}} −\mathrm{9}\right){u}^{\mathrm{5}} +\mathrm{4}{u}^{\mathrm{4}} +\mathrm{4}{u}^{\mathrm{3}} +\left({t}^{\mathrm{2}} −\mathrm{7}\right){u}^{\mathrm{2}} +\mathrm{4}{u}+\mathrm{4}=\mathrm{0} \\ $$$$\mathrm{now}\:\mathrm{if}\:{t}^{\mathrm{2}} −\mathrm{7}=\mathrm{2}\left({t}^{\mathrm{2}} −\mathrm{9}\right)=\mathrm{4}\:\mathrm{this}\:\mathrm{would}\:\mathrm{be}\:\mathrm{nice} \\ $$$$\Rightarrow\:{t}=\pm\sqrt{\mathrm{11}}\:\mathrm{but}\:\mathrm{we}\:\mathrm{know}\:\mathrm{that}\:{t}>\mathrm{0}\:\Rightarrow\:{t}=\sqrt{\mathrm{11}} \\ $$$$\Rightarrow \\ $$$${u}^{\mathrm{10}} +{u}^{\mathrm{9}} +{u}^{\mathrm{8}} +{u}^{\mathrm{7}} +{u}^{\mathrm{6}} +{u}^{\mathrm{5}} +{u}^{\mathrm{4}} +{u}^{\mathrm{3}} +{u}^{\mathrm{2}} +{u}+\mathrm{1}=\mathrm{0} \\ $$$$\mathrm{multiplicate}\:\mathrm{with}\:\left({u}−\mathrm{1}\right) \\ $$$$\Rightarrow \\ $$$${u}^{\mathrm{11}} −\mathrm{1}=\mathrm{0}\:\Rightarrow\:{u}=\mathrm{1}\:\vee\:{u}=\mathrm{e}^{\mathrm{i}\frac{{n}\pi}{\mathrm{11}}} \:\mathrm{with}\:{n}\in\mathbb{N}\wedge\mathrm{1}\leqslant{n}\leqslant\mathrm{10} \\ $$$$\mathrm{but}\:{u}=\mathrm{e}^{\mathrm{i}\frac{\mathrm{2}\pi}{\mathrm{11}}} \:\mathrm{which}\:\mathrm{indeed}\:\mathrm{is}\:\mathrm{a}\:\mathrm{solution}\:\mathrm{and} \\ $$$${u}^{\frac{\mathrm{3}}{\mathrm{2}}} =\mathrm{e}^{\mathrm{i}\frac{\mathrm{3}\pi}{\mathrm{11}}} \:\mathrm{which}\:\mathrm{is}\:\mathrm{also}\:\mathrm{a}\:\mathrm{solution} \\ $$$$\Rightarrow \\ $$$${t}=\sqrt{\mathrm{11}} \\ $$

Commented by jagoll last updated on 11/Feb/20

via complex analysis sir

$${via}\:{complex}\:{analysis}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com