Question and Answers Forum

All Questions      Topic List

Vector Questions

Previous in All Question      Next in All Question      

Previous in Vector      Next in Vector      

Question Number 81295 by jagoll last updated on 11/Feb/20

what is vector unit orthogonal  to (1,2,−2) and parallel to   yz−plane?

$${what}\:{is}\:{vector}\:{unit}\:{orthogonal} \\ $$$${to}\:\left(\mathrm{1},\mathrm{2},−\mathrm{2}\right)\:{and}\:{parallel}\:{to}\: \\ $$$${yz}−{plane}? \\ $$

Commented by john santu last updated on 11/Feb/20

say this vector b^�  = (x,y,z)  (i) x^2 +y^2 +z^2  = 1  (ii) b^�  . (1,2,−2) = 0  x+2y−2z =0  (iii) b^�  parallel to yz−plane  ⇒b^�  ⊥ i^�  ⇒ x =0   then we get y = z = ±(1/2)(√2)  ∴ b^�  = (0, (1/2)(√2) , (1/2)(√2))  or b^�  = (0, −(1/2)(√2) ,−(1/2)(√2) )

$${say}\:{this}\:{vector}\:\bar {{b}}\:=\:\left({x},{y},{z}\right) \\ $$$$\left({i}\right)\:{x}^{\mathrm{2}} +{y}^{\mathrm{2}} +{z}^{\mathrm{2}} \:=\:\mathrm{1} \\ $$$$\left({ii}\right)\:\bar {{b}}\:.\:\left(\mathrm{1},\mathrm{2},−\mathrm{2}\right)\:=\:\mathrm{0} \\ $$$${x}+\mathrm{2}{y}−\mathrm{2}{z}\:=\mathrm{0} \\ $$$$\left({iii}\right)\:\bar {{b}}\:{parallel}\:{to}\:{yz}−{plane} \\ $$$$\Rightarrow\bar {{b}}\:\bot\:\hat {{i}}\:\Rightarrow\:{x}\:=\mathrm{0}\: \\ $$$${then}\:{we}\:{get}\:{y}\:=\:{z}\:=\:\pm\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}} \\ $$$$\therefore\:\bar {{b}}\:=\:\left(\mathrm{0},\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:,\:\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\right) \\ $$$${or}\:\bar {{b}}\:=\:\left(\mathrm{0},\:−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:,−\frac{\mathrm{1}}{\mathrm{2}}\sqrt{\mathrm{2}}\:\right) \\ $$

Commented by jagoll last updated on 11/Feb/20

thx

$$\mathrm{thx} \\ $$

Answered by MJS last updated on 11/Feb/20

parallel to yz−plane = orthogonal to x−axis  vector orthogonal to 2 given vectors   ((x_1 ),(y_1 ),(z_1 ) ) ,  ((x_2 ),(y_2 ),(z_2 ) )  can be calculated with a  determinant  u_x = ((1),(0),(0) ) , u_y = ((0),(1),(0) ) , u_z = ((0),(0),(1) )   determinant ((x_1 ,x_2 ,u_x ),(y_1 ,y_2 ,u_y ),(z_1 ,z_2 ,u_z ))=(y_1 z_2 −y_2 z_1 )u_x +(x_2 z_1 −x_1 z_2 )u_y +(x_1 y_2 −x_2 y_1 )u_z =  = (((y_1 z_2 −y_2 z_1 )),((x_2 z_1 −x_1 z_2 )),((x_1 y_2 −x_2 y_1 )) )  in our case this gives   ((0),((−2)),((−2)) ) with length 2(√2)  ⇒ answer is ± ((0),(((√2)/2)),(((√2)/2)) )

$$\mathrm{parallel}\:\mathrm{to}\:{yz}−\mathrm{plane}\:=\:\mathrm{orthogonal}\:\mathrm{to}\:{x}−\mathrm{axis} \\ $$$$\mathrm{vector}\:\mathrm{orthogonal}\:\mathrm{to}\:\mathrm{2}\:\mathrm{given}\:\mathrm{vectors} \\ $$$$\begin{pmatrix}{{x}_{\mathrm{1}} }\\{{y}_{\mathrm{1}} }\\{{z}_{\mathrm{1}} }\end{pmatrix}\:,\:\begin{pmatrix}{{x}_{\mathrm{2}} }\\{{y}_{\mathrm{2}} }\\{{z}_{\mathrm{2}} }\end{pmatrix}\:\:\mathrm{can}\:\mathrm{be}\:\mathrm{calculated}\:\mathrm{with}\:\mathrm{a} \\ $$$$\mathrm{determinant} \\ $$$${u}_{{x}} =\begin{pmatrix}{\mathrm{1}}\\{\mathrm{0}}\\{\mathrm{0}}\end{pmatrix}\:,\:{u}_{{y}} =\begin{pmatrix}{\mathrm{0}}\\{\mathrm{1}}\\{\mathrm{0}}\end{pmatrix}\:,\:{u}_{{z}} =\begin{pmatrix}{\mathrm{0}}\\{\mathrm{0}}\\{\mathrm{1}}\end{pmatrix} \\ $$$$\begin{vmatrix}{{x}_{\mathrm{1}} }&{{x}_{\mathrm{2}} }&{{u}_{{x}} }\\{{y}_{\mathrm{1}} }&{{y}_{\mathrm{2}} }&{{u}_{{y}} }\\{{z}_{\mathrm{1}} }&{{z}_{\mathrm{2}} }&{{u}_{{z}} }\end{vmatrix}=\left({y}_{\mathrm{1}} {z}_{\mathrm{2}} −{y}_{\mathrm{2}} {z}_{\mathrm{1}} \right){u}_{{x}} +\left({x}_{\mathrm{2}} {z}_{\mathrm{1}} −{x}_{\mathrm{1}} {z}_{\mathrm{2}} \right){u}_{{y}} +\left({x}_{\mathrm{1}} {y}_{\mathrm{2}} −{x}_{\mathrm{2}} {y}_{\mathrm{1}} \right){u}_{{z}} = \\ $$$$=\begin{pmatrix}{{y}_{\mathrm{1}} {z}_{\mathrm{2}} −{y}_{\mathrm{2}} {z}_{\mathrm{1}} }\\{{x}_{\mathrm{2}} {z}_{\mathrm{1}} −{x}_{\mathrm{1}} {z}_{\mathrm{2}} }\\{{x}_{\mathrm{1}} {y}_{\mathrm{2}} −{x}_{\mathrm{2}} {y}_{\mathrm{1}} }\end{pmatrix} \\ $$$$\mathrm{in}\:\mathrm{our}\:\mathrm{case}\:\mathrm{this}\:\mathrm{gives} \\ $$$$\begin{pmatrix}{\mathrm{0}}\\{−\mathrm{2}}\\{−\mathrm{2}}\end{pmatrix}\:\mathrm{with}\:\mathrm{length}\:\mathrm{2}\sqrt{\mathrm{2}} \\ $$$$\Rightarrow\:\mathrm{answer}\:\mathrm{is}\:\pm\begin{pmatrix}{\mathrm{0}}\\{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\\{\frac{\sqrt{\mathrm{2}}}{\mathrm{2}}}\end{pmatrix} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com