Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 81313 by M±th+et£s last updated on 11/Feb/20

∫(((x−2)^3 )/((x+2)^5 )) dx

(x2)3(x+2)5dx

Commented by M±th+et£s last updated on 11/Feb/20

sorry there is a typo its (x−2)^(−3)

sorrythereisatypoits(x2)3

Commented by MJS last updated on 11/Feb/20

∫(dx/((x+2)^5 (x−2)^3 ))=  just decompose and solve. I don′t want to  do this job for you  =∫((A/((x+2)^5 ))+(B/((x+2)^4 ))+(C/((x+2)^3 ))+(D/((x+2)^2 ))+(E/(x+2))+(F/((x−2)^3 ))+(G/((x−2)^2 ))+(H/(x−2)))dx

dx(x+2)5(x2)3=justdecomposeandsolve.Idontwanttodothisjobforyou=(A(x+2)5+B(x+2)4+C(x+2)3+D(x+2)2+Ex+2+F(x2)3+G(x2)2+Hx2)dx

Commented by Tony Lin last updated on 12/Feb/20

you can let u=((x+2)/(x−2)) , (du/dx)=((−4)/((x−2)^2 ))  x=((2u+2)/(u−1))  ⇒−(1/4) ∫(du/((((4u)/(u−1)))^5 ((4/(u−1)))))  =−(1/(4096))∫(((u−1)^6 )/u^5 ) du   =−(1/(4096))∫(u+((15)/u)−((20)/u^2 )+((15)/u^3 )−(6/u^4 )+(1/u^5 )−6)du  =−(1/(4096))((u^2 /2)+15ln∣u∣+((20)/u)−((15)/(2u^2 ))+(2/u^3 )  −(1/(4u^4 ))−6u)+c  plug u=((x+2)/(x−2)) in  ⇒∫(dx/((x+2)^5 (x−2)^3 ))   =−(1/(4096))[(((((x+2)/(x−2)))^2 )/2)+15ln∣((x+2)/(x−2))∣+((20(x−2))/(x+2))          −((15)/2)(((x−2)/(x+2)))^2 +2(((x−2)/(x+2)))^3 −(1/4)(((x−2)/(x+2)))^4 −  ((6(x+2))/(x−2))]+c

youcanletu=x+2x2,dudx=4(x2)2x=2u+2u114du(4uu1)5(4u1)=14096(u1)6u5du=14096(u+15u20u2+15u36u4+1u56)du=14096(u22+15lnu+20u152u2+2u314u46u)+cplugu=x+2x2indx(x+2)5(x2)3=14096[(x+2x2)22+15lnx+2x2+20(x2)x+2152(x2x+2)2+2(x2x+2)314(x2x+2)46(x+2)x2]+c

Commented by mathmax by abdo last updated on 11/Feb/20

I=∫  (dx/((x−2)^3 (x+2)^5 )) =∫   (dx/((((x−2)/(x+2)))^3 (x+2)^8 )) changement ((x−2)/(x+2)) =t  give x−2=xt +2t ⇒(1−t)x=2t +2 ⇒x=((2t+2)/(1−t)) ⇒x+2=2+((2t+2)/(1−t))  =((2−2t+2t+2)/(1−t)) =(4/((1−t)))  dx =((2(1−t)−(2t+2)(−1))/((1−t)^2 ))dt =((2−2t+2t+2)/((t−1)^2 )) =(4/((t−1)^2 ))dt ⇒  I=∫  ((4dt)/((t−1)^2 .t^3 ((4/(1−t)))^8 )) =(1/4^7 ) ∫  (((t−1)^8 )/((t−1)^2 .t^3 ))dt  =(1/4^7 )∫  (((t−1)^4 )/t^3 )dt=(1/4^7 )∫  ((Σ_(k=0) ^4  C_4 ^k  t^k (−1)^(4−k) )/t^3 )dt  =(1/4^7 ) ∫  ((C_4 ^0  (−1)^4  −C_4 ^1  t +C_4 ^2 t^2 −C_4 ^3  t^3  +C_4 ^4  t^4 )/t^3 )dt  =(1/4^7 )∫ (dt/t^3 )−(C_4 ^1 /4^7 ) ∫ (dt/t^2 ) +(C_4 ^2 /4^7 ) ∫ (dt/t)−(C_4 ^3 /4^7 ) ∫ dt  +(1/4^7 ) ∫ tdt  =−(1/2)(1/4^7 )×(1/t^2 )  +(1/(4^6 t)) +(C_4 ^2 /4^7 )ln∣t∣−(1/4^6 )t  +(1/(2.4^7 ))t^2  +C  C_4 ^2  =((4!)/(2!×2!)) =((4×3×2!)/((2!)^2 ))=6 ⇒  I =−(1/(2×4^7 ))(((x+2)/(x−2)))^2  +(1/4^6 )(((x+2)/(x−2))))+(6/4^7 )ln∣((x−2)/(x+2))∣−(1/4^6 )(((x−2)/(x+2)))+(1/(2.4^7 ))(((x−2)/(x+2)))^2  +C

I=dx(x2)3(x+2)5=dx(x2x+2)3(x+2)8changementx2x+2=tgivex2=xt+2t(1t)x=2t+2x=2t+21tx+2=2+2t+21t=22t+2t+21t=4(1t)dx=2(1t)(2t+2)(1)(1t)2dt=22t+2t+2(t1)2=4(t1)2dtI=4dt(t1)2.t3(41t)8=147(t1)8(t1)2.t3dt=147(t1)4t3dt=147k=04C4ktk(1)4kt3dt=147C40(1)4C41t+C42t2C43t3+C44t4t3dt=147dtt3C4147dtt2+C4247dttC4347dt+147tdt=12147×1t2+146t+C4247lnt146t+12.47t2+CC42=4!2!×2!=4×3×2!(2!)2=6I=12×47(x+2x2)2+146(x+2x2))+647lnx2x+2146(x2x+2)+12.47(x2x+2)2+C

Commented by msup trace by abdo last updated on 12/Feb/20

error of calculus from line 6  I=(1/4^7 )∫  (((t−1)^6 )/t^3 )dt  =(1/4^7 )∫ ((Σ_(k=0) ^6  C_6 ^k  t^k  (−1)^(6−k) )/t^3 )dt  =(1/4^7 )Σ_(k=0) ^6  C_6 ^k (−1)^(6−k) ∫ t^(k−3)   dt  =.....

errorofcalculusfromline6I=147(t1)6t3dt=147k=06C6ktk(1)6kt3dt=147k=06C6k(1)6ktk3dt=.....

Answered by MJS last updated on 12/Feb/20

∫(dx/((x+2)^5 (x−2)^3 ))=?  Ostrogradski′s Method  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd (Q(x), Q′(x)) =(x+2)^4 (x−2)^2   Q_2 (x)=((Q(x))/(Q_1 (x)))=(x+2)(x−2)  ((P(x))/(Q(x)))=(d/dx)[((P_1 (x))/(Q_1 (x)))]+((P_2 (x))/(Q_2 (x)))  (1/((x+2)^5 (x−2)^3 ))=(d/dx)[((ax^5 +bx^4 +cx^3 +dx^2 +ex+f)/((x+2)^4 (x−2)^2 ))]+((gx+h)/((x+2)(x−2)))  ⇒  P_1 (x)=((15)/(4096))x^5 +((15)/(1024))x^4 −(5/(512))x^3 −((25)/(256))x^2 −((17)/(256))x+(1/8)  P_2 (x)=((15)/(4096))  ∫(dx/((x+2)^5 (x−2)^3 ))=  =((15x^5 +60x^4 −40x^3 −400x^2 −272x+512)/(4096(x+2)^4 (x−2)^2 ))+((15)/(4096))∫(dx/((x+2)(x−2)))=  =((15x^5 +60x^4 −40x^3 −400x^2 −272x+512)/(4096(x+2)^4 (x−2)^2 ))+((15)/(16384))ln ∣((x−2)/(x+2))∣ +C

dx(x+2)5(x2)3=?OstrogradskisMethodP(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcd(Q(x),Q(x))=(x+2)4(x2)2Q2(x)=Q(x)Q1(x)=(x+2)(x2)P(x)Q(x)=ddx[P1(x)Q1(x)]+P2(x)Q2(x)1(x+2)5(x2)3=ddx[ax5+bx4+cx3+dx2+ex+f(x+2)4(x2)2]+gx+h(x+2)(x2)P1(x)=154096x5+151024x45512x325256x217256x+18P2(x)=154096dx(x+2)5(x2)3==15x5+60x440x3400x2272x+5124096(x+2)4(x2)2+154096dx(x+2)(x2)==15x5+60x440x3400x2272x+5124096(x+2)4(x2)2+1516384lnx2x+2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com