Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 81336 by mathmax by abdo last updated on 11/Feb/20

decompose F(x)=(1/((x−1)^3 (x+3)^7 ))  and detrmine  ∫ F(x)dx  2) calculate ∫_2 ^(+∞)  F(x)dx

decomposeF(x)=1(x1)3(x+3)7anddetrmineF(x)dx2)calculate2+F(x)dx

Commented by Tony Lin last updated on 12/Feb/20

∫(dx/((x−1)^3 (x+3)^7 ))  let u=((x+3)/(x−1)) , (du/dx)=((−4)/((x−1)^2 ))  x=((u+3)/(u−1))  ⇒−(1/4)∫(du/(((4/(u−1)))(((4u)/(u−1)))^7 ))  =−(1/4^9 )∫(((u−1)^8 )/u^7 )du  =∫(u−8+((28)/u)−((56)/u^2 )+((70)/u^3 )−((56)/u^4 )+((28)/u^5 )−(8/u^6 )+(1/u^7 ))du  ×(−(1/4^9 ))  =((u^2 /2)−8u+28ln∣u∣+((56)/u)−((35)/u^2 )+((56)/(3u^3 ))−(7/u^4 )  +(8/(5u^5 ))−(1/(6u^(6 ) )))×(−(1/(262144)))+c  plug u=((x+3)/(x−1)) in  ⇒∫(dx/((x−1)^3 (x+3)^7 ))  =−(1/(262144))[(((((x+3)/(x−1)))^2 )/2)−((8(x+3))/(x−1))+28ln∣((x+3)/(x−1))∣  +((56(x−1))/(x+3))−35(((x−1)/(x+3)))^2 +((56)/3)(((x−1)/(x+3)))^3 −  7(((x−1)/(x+3)))^4 +(8/5)(((x−1)/(x+3)))^5 −(1/6)(((x−1)/(x+3)))^6 ]+c

dx(x1)3(x+3)7letu=x+3x1,dudx=4(x1)2x=u+3u114du(4u1)(4uu1)7=149(u1)8u7du=(u8+28u56u2+70u356u4+28u58u6+1u7)du×(149)=(u228u+28lnu+56u35u2+563u37u4+85u516u6)×(1262144)+cplugu=x+3x1indx(x1)3(x+3)7=1262144[(x+3x1)228(x+3)x1+28lnx+3x1+56(x1)x+335(x1x+3)2+563(x1x+3)37(x1x+3)4+85(x1x+3)516(x1x+3)6]+c

Commented by Tony Lin last updated on 12/Feb/20

∫(dx/((x+a)^m (x+b)^n ))  let u=((x+b)/(x+a)) , (du/dx)=((a−b)/((x+a)^2 ))  x=((b−au)/(u−1))  ⇒(1/(a−b))∫(du/((((b−a)/(u−1)))^(m−2) [(((b−a)u)/(u−1))]^n ))  =−(1/((b−a)^(m+n−1) ))∫ (((u−1)^(m+n−2) )/u^n )du  =∫((Σ_(r=0) ^(m+n−2) C_r ^(m+n−2) (((x+b)/(x+a)))^(r−n) (−1)^(m+n−2−r) )/(−(b−a)^(m+n−1) ))d(((x+b)/(x+a)))

dx(x+a)m(x+b)nletu=x+bx+a,dudx=ab(x+a)2x=bauu11abdu(bau1)m2[(ba)uu1]n=1(ba)m+n1(u1)m+n2undu=m+n2r=0Crm+n2(x+bx+a)rn(1)m+n2r(ba)m+n1d(x+bx+a)

Commented by mathmax by abdo last updated on 12/Feb/20

thank you sir.

thankyousir.

Commented by MJS last updated on 12/Feb/20

on my path the hard work is solving the  system for the coefficients c_j   on your path it is to compose all those fractions  if needed

onmypaththehardworkissolvingthesystemforthecoefficientscjonyourpathitistocomposeallthosefractionsifneeded

Commented by mathmax by abdo last updated on 12/Feb/20

∫F(x)dx =∫  (dx/((x−1)^3 (x+3)^7 )) =∫  (dx/((((x−1)/(x+3)))^3 (x+3)^(10) )) changement  ((x−1)/(x+3))=t give x−1=tx+3t ⇒(1−t)x=3t+1 ⇒x=((3t+1)/(1−t)) ⇒  x+3=3+((3t+1)/(1−t)) =((3−3t+3t+1)/(1−t)) =(4/(1−t)) ⇒dx =(4/((1−t)^2 )) ⇒  ∫F(x)dx =∫ ((4dt)/((t−1)^2 t^3 ((4/(1−t)))^(10) )) =4 ∫  (((t−1)^(10) )/(4^(10) (t−1)^2 t^3 ))dt  =(1/4^9 ) ∫  (((t−1)^8 )/t^3 )dt =(1/4^9 )∫  ((Σ_(k=0) ^8  C_8 ^k  t^k (−1)^(8−k) )/t^3 )dt  =(1/4^9 ) ∫  ((1−C_8 ^1  t +C_8 ^2  t^2 −C_8 ^3  t^3  +C_8 ^4  t^4 −C_8 ^5  t^5  +C_8 ^6  t^6 −C_8 ^7 t^7 +C_8 ^8  t^8 )/t^3 )dt  =(1/4^9 ) ∫ (dt/t^3 ) −(C_8 ^1 /4^9 ) ∫  (dt/t^2 ) +(C_8 ^2 /4^9 )∫ (dt/t) −(C_8 ^3 /4^9 )∫dt  (C_8 ^4 /4^9 ) ∫ tdt−(C_8 ^5 /4^9 ) ∫ t^2 dt  +(C_8 ^6 /4^9 )∫ t^3  dt −(C_8 ^7 /4^9 ) ∫ t^4  dt  +(C_8 ^8 /4^9 )∫ t^5  dt  =−(1/(2×4^9  ×t^2 )) +(8/(4^9 ×t)) +(C_8 ^2 /4^9 )ln∣t∣−(C_8 ^3 /4^9 )t  +(C_8 ^4 /(2.4^9 ))t^2 −(C_8 ^5 /(3.4^9 ))t^3  +(C_8 ^6 /4^(10) )t^4   −(C_8 ^7 /(5.4^9 ))t^5  +(1/(6.4^9 ))t^6  +C  =−(1/(2.4^9 ))(((x+3)/(x−1)))^2  +(8/4^9 )(((x+3)/(x−1)))+(C_8 ^2 /4^9 )ln∣((x−1)/(x+3))∣−(C_8 ^3 /4^9 )(((x−1)/(x+3)))  +(C_8 ^4 /(2.4^9 ))(((x−1)/(x+3)))^2  −(C_8 ^5 /(3.4^9 ))(((x−1)/(x+3)))^3  +(C_8 ^6 /4^(10) )(((x−1)/(x+3)))^4  −(C_8 ^7 /(5.4^9 ))(((x−1)/(x+3)))^5  +(1/(6.4^9 ))(((x−1)/(x+3)))^6  +C

F(x)dx=dx(x1)3(x+3)7=dx(x1x+3)3(x+3)10changementx1x+3=tgivex1=tx+3t(1t)x=3t+1x=3t+11tx+3=3+3t+11t=33t+3t+11t=41tdx=4(1t)2F(x)dx=4dt(t1)2t3(41t)10=4(t1)10410(t1)2t3dt=149(t1)8t3dt=149k=08C8ktk(1)8kt3dt=1491C81t+C82t2C83t3+C84t4C85t5+C86t6C87t7+C88t8t3dt=149dtt3C8149dtt2+C8249dttC8349dtC8449tdtC8549t2dt+C8649t3dtC8749t4dt+C8849t5dt=12×49×t2+849×t+C8249lntC8349t+C842.49t2C853.49t3+C86410t4C875.49t5+16.49t6+C=12.49(x+3x1)2+849(x+3x1)+C8249lnx1x+3C8349(x1x+3)+C842.49(x1x+3)2C853.49(x1x+3)3+C86410(x1x+3)4C875.49(x1x+3)5+16.49(x1x+3)6+C

Commented by mathmax by abdo last updated on 12/Feb/20

∫_2 ^(+∞) F(x)dx =−(1/(2.4^9 ))[(((x+3)/(x−1)))^2 ]_2 ^(+∞)  +(8/4^9 )[(((x+3)/(x−1)))]_2 ^(+∞)  +(C_8 ^2 /4^9 )[ln∣((x−1)/(x+3))∣]_2 ^(+∞)   −(C_8 ^3 /4^9 )[(((x−1)/(x+3)))]_2 ^(+∞)  +(C_8 ^4 /(2.4^9 ))[(((x−1)/(x+3)))^2 ]_2 ^(+∞) −(C_8 ^5 /(3.4^9 ))[(((x−1)/(x+3)))^3 ]_2 ^(+∞)   +(C_8 ^6 /4^(10) )[(((x−1)/(x+3)))^4 ]_2 ^(+∞) −(C_8 ^7 /(5.4^9 ))[(((x−1)/(x+3)))^5 ]_2 ^(+∞) +(1/(6.4^9 ))[(((x−1)/(x+3)))^6 ]_2 ^(+∞)   =−(1/(2.4^9 )){1−5^2 }+(8/4^9 ){1−5}+(C_8 ^2 /4^9 ){−ln((1/5))}  −(C_8 ^3 /4^9 ){1−(1/5)}+(C_8 ^4 /(2.4^9 )){1−((1/5))^2 }−(C_8 ^5 /(3.4^9 )){1−((1/5))^3 }  +(C_8 ^6 /4^(10) ){1−((1/5))^4 }−(C_8 ^7 /(5.4^9 )){1−((1/5))^5 } +(1/(6.4^9 )){1−((1/5))^6 }

2+F(x)dx=12.49[(x+3x1)2]2++849[(x+3x1)]2++C8249[lnx1x+3]2+C8349[(x1x+3)]2++C842.49[(x1x+3)2]2+C853.49[(x1x+3)3]2++C86410[(x1x+3)4]2+C875.49[(x1x+3)5]2++16.49[(x1x+3)6]2+=12.49{152}+849{15}+C8249{ln(15)}C8349{115}+C842.49{1(15)2}C853.49{1(15)3}+C86410{1(15)4}C875.49{1(15)5}+16.49{1(15)6}

Commented by mathmax by abdo last updated on 12/Feb/20

the avantage of this method is finding integral without passing  by decomposition..!

theavantageofthismethodisfindingintegralwithoutpassingbydecomposition..!

Answered by MJS last updated on 12/Feb/20

Ostrogradski′s Method again (it′s faster in my  opinion)  ∫(dx/((x+3)^7 (x−1)^3 ))  ∫((P(x))/(Q(x)))dx=((P_1 (x))/(Q_1 (x)))+∫((P_2 (x))/(Q_2 (x)))dx  Q_1 (x)=gcd (Q(x), Q^′ (x))=(x+3)^6 (x−1)^2 oo  Q_2 (x)=((Q(x))/(Q_1 (x)))=(x+3)(x−1)  ((P(x))/(Q(x)))=(d/dx)[((P_1 (x))/(Q_1 (x)))]+((P_2 (x))/(Q_2 (x)))  (1/((x+3)^7 (x−1)^3 ))=(d/dx)[((Σ_(j=0) ^7 c_j x^j )/((x+3)^6 (x−1)^2 ))]+((d_1 x+d_0 )/((x+3)(x−1)))  ⇒  P_1 (x)=((105x^7 +1575x^6 +9065x^5 +23135x^4 +15491x^3 −38339x^2 −56405x+14653)/(245760))  P_2 (x)=(7/(16384))  ⇒ we only have to solve (7/(16384))∫(dx/((x+3)(x−1)))=  =(7/(65536))ln ∣((x−1)/(x+3))∣  ∫(dx/((x+3)^7 (x−1)^3 ))=  =((105x^7 +1575x^6 +9065x^5 +23135x^4 +15491x^3 −38339x^2 −56405x+14653)/(245760(x+3)^6 (x−1)^2 ))+(7/(65536))ln ∣((x−1)/(x+3))∣ +C  ∫_2 ^∞ (dx/((x+3)^7 (x−1)^3 ))=((−517516+328125ln 5)/(3072000000))

OstrogradskisMethodagain(itsfasterinmyopinion)dx(x+3)7(x1)3P(x)Q(x)dx=P1(x)Q1(x)+P2(x)Q2(x)dxQ1(x)=gcd(Q(x),Q(x))=(x+3)6(x1)2ooQ2(x)=Q(x)Q1(x)=(x+3)(x1)P(x)Q(x)=ddx[P1(x)Q1(x)]+P2(x)Q2(x)1(x+3)7(x1)3=ddx[7j=0cjxj(x+3)6(x1)2]+d1x+d0(x+3)(x1)P1(x)=105x7+1575x6+9065x5+23135x4+15491x338339x256405x+14653245760P2(x)=716384weonlyhavetosolve716384dx(x+3)(x1)==765536lnx1x+3dx(x+3)7(x1)3==105x7+1575x6+9065x5+23135x4+15491x338339x256405x+14653245760(x+3)6(x1)2+765536lnx1x+3+C2dx(x+3)7(x1)3=517516+328125ln53072000000

Commented by john santu last updated on 12/Feb/20

ostrogradski′s method can use any   type integral?

ostrogradskismethodcanuseanytypeintegral?

Commented by msup trace by abdo last updated on 12/Feb/20

thank you sir .

thankyousir.

Commented by MJS last updated on 12/Feb/20

no. P(x) and Q(x) must be polynomes.  the degree of P(x) must be smaller than  the degree of Q(x) and all coefficients must  be real  the degree of P_1 (x) will then be smaller than  the degree of Q_1 (x), same for P_2 (x) and Q_2 (x)  I think you can find information on wikipedia

no.P(x)andQ(x)mustbepolynomes.thedegreeofP(x)mustbesmallerthanthedegreeofQ(x)andallcoefficientsmustberealthedegreeofP1(x)willthenbesmallerthanthedegreeofQ1(x),sameforP2(x)andQ2(x)Ithinkyoucanfindinformationonwikipedia

Commented by jagoll last updated on 12/Feb/20

thank you mister

thankyoumister

Terms of Service

Privacy Policy

Contact: info@tinkutara.com