All Questions Topic List
Integration Questions
Previous in All Question Next in All Question
Previous in Integration Next in Integration
Question Number 81432 by abdomathmax last updated on 13/Feb/20
find∫dx(x+1)3(x2+3)2
Commented by abdomathmax last updated on 20/Feb/20
lettrycomplexmethodI=∫dx(x+1)3(x2+3)2dx⇒I=∫dx(x+1)3(x−i3)2(x+i3)2=∫dx(x+1x+i3)3×(x+i3)5(x−i3)2changementx+1x+i3=tgivex+1=tx+i3t⇒(1−t)x=i3t−1⇒x=i3t−11−tdx=i3(1−t)−(i3t−1)(−1)(1−t)2dt=i3−i3t+i3t−1(t−1)2dt=i3−1(t−1)2dtx+i3=i3t−11−t+i3=i3t−1+i3−i3t1−t=i3−11−t=1−i3t−1x−i3=i3t−11−t−i3=i3t−1−i3+i3t(1−t)=2i3t−1−i3(1−t)=−2i3t+1+i3(t−1)⇒I=(i3−1)∫dt(t−1)2t3(1−i3t−1)5(−2i3t+1+i3t−1)2=(i3−1)∫(t−1)7dt(t−1)2t3(−2i3t+1+i3)2(1−i3)5=−1(i3−1)4∫(t−1)5t3(−2i3t+i3)2dt=13(i3−1)4∫(t−1)5t2(−2t+1)2dt=λ∫∑k=05C5ktk(−1)5−kt2(2t−1)2dt(λ=13(i3−1)4)=λ∫−C50+C51t−C52t2+C53t3−C54t4+C55t5t2(2t−1)2dt=λ∫{−C50t2(2t−1)2+C51t(2t−1)2−C52(2t−1)2+C53t(2t−1)2−C54t2(2t−1)2+C55t5(2t−1)2}dt...becontinued...
Answered by MJS last updated on 13/Feb/20
∫dx(x+1)3(x2+3)2=Q1(x)=(x+1)2(x2+3)Q2(x)=(x+1)(x2+3)P1(x)=−112x3−1396x2−524x−932P2(x)=−x12−148=−8x3+13x2+20x+2796(x+1)2(x2+3)−148∫4x+1(x+1)(x2+3)dx∫4x+1(x+1)(x2+3)dx=−34∫dxx+1+14∫3x+13x2+3dx==−34ln∣x+1∣+38ln(x2+3)+13312arctan3x3==38lnx2+3(x+1)2+13312arctan3x3=−8x3+13x2+20x+2796(x+1)2(x2+3)−1128lnx2+3(x+1)2−133576arctan3x3+C
Terms of Service
Privacy Policy
Contact: info@tinkutara.com