Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 81433 by abdomathmax last updated on 13/Feb/20

calculate ∫_2 ^(+∞)      ((2x+3)/((x−1)^3 (x^2 +x+1)^2 ))dx

$${calculate}\:\int_{\mathrm{2}} ^{+\infty} \:\:\:\:\:\frac{\mathrm{2}{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{3}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }{dx} \\ $$

Answered by MJS last updated on 13/Feb/20

∫((2x+3)/((x−1)^2 (x^2 +x+1)^2 ))=       Q_1 (x)=Q_2 (x)=(x−1)(x^2 +x+1)       P_1 (x)=−(2/3)x^2 −x       P_2 (x)=−(2/3)x−2  =−((x(2x+3))/(3(x−1)(x^2 +x+1)))−(2/3)∫((x+3)/((x−1)(x^2 +x+1)))dx=       ∫((x+3)/((x−1)(x^2 +x+1)))dx=(4/3)∫(dx/(x−1))−(1/3)∫((4x+5)/(x^2 +x+1))dx=       =(4/3)ln ∣x−1∣ −(2/3)ln (x^2 +x+1) −((2(√3))/3)arctan (((√3)(2x+1))/3) =       =(2/3)ln (((x−1)^2 )/(x^2 +x+1)) −((2(√3))/3)arctan (((√3)(2x+1))/3)  =−((x(2x+3))/(3(x−1)(x^2 +x+1)))−(4/9)ln (((x−1)^2 )/(x^2 +x+1)) +((4(√3))/9)arctan (((√3)(2x+1))/3) +C  ⇒  answer is ((2π(√3))/9)+(2/3)−(4/9)ln 7 −((4(√3))/9)arctan ((5(√3))/3)

$$\int\frac{\mathrm{2}{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)^{\mathrm{2}} \left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)^{\mathrm{2}} }= \\ $$$$\:\:\:\:\:{Q}_{\mathrm{1}} \left({x}\right)={Q}_{\mathrm{2}} \left({x}\right)=\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right) \\ $$$$\:\:\:\:\:{P}_{\mathrm{1}} \left({x}\right)=−\frac{\mathrm{2}}{\mathrm{3}}{x}^{\mathrm{2}} −{x} \\ $$$$\:\:\:\:\:{P}_{\mathrm{2}} \left({x}\right)=−\frac{\mathrm{2}}{\mathrm{3}}{x}−\mathrm{2} \\ $$$$=−\frac{{x}\left(\mathrm{2}{x}+\mathrm{3}\right)}{\mathrm{3}\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}−\frac{\mathrm{2}}{\mathrm{3}}\int\frac{{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}{dx}= \\ $$$$\:\:\:\:\:\int\frac{{x}+\mathrm{3}}{\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}{dx}=\frac{\mathrm{4}}{\mathrm{3}}\int\frac{{dx}}{{x}−\mathrm{1}}−\frac{\mathrm{1}}{\mathrm{3}}\int\frac{\mathrm{4}{x}+\mathrm{5}}{{x}^{\mathrm{2}} +{x}+\mathrm{1}}{dx}= \\ $$$$\:\:\:\:\:=\frac{\mathrm{4}}{\mathrm{3}}\mathrm{ln}\:\mid{x}−\mathrm{1}\mid\:−\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\:\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)\:−\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}}\:= \\ $$$$\:\:\:\:\:=\frac{\mathrm{2}}{\mathrm{3}}\mathrm{ln}\:\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:−\frac{\mathrm{2}\sqrt{\mathrm{3}}}{\mathrm{3}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}} \\ $$$$=−\frac{{x}\left(\mathrm{2}{x}+\mathrm{3}\right)}{\mathrm{3}\left({x}−\mathrm{1}\right)\left({x}^{\mathrm{2}} +{x}+\mathrm{1}\right)}−\frac{\mathrm{4}}{\mathrm{9}}\mathrm{ln}\:\frac{\left({x}−\mathrm{1}\right)^{\mathrm{2}} }{{x}^{\mathrm{2}} +{x}+\mathrm{1}}\:+\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\frac{\sqrt{\mathrm{3}}\left(\mathrm{2}{x}+\mathrm{1}\right)}{\mathrm{3}}\:+{C} \\ $$$$\Rightarrow \\ $$$$\mathrm{answer}\:\mathrm{is}\:\frac{\mathrm{2}\pi\sqrt{\mathrm{3}}}{\mathrm{9}}+\frac{\mathrm{2}}{\mathrm{3}}−\frac{\mathrm{4}}{\mathrm{9}}\mathrm{ln}\:\mathrm{7}\:−\frac{\mathrm{4}\sqrt{\mathrm{3}}}{\mathrm{9}}\mathrm{arctan}\:\frac{\mathrm{5}\sqrt{\mathrm{3}}}{\mathrm{3}} \\ $$

Commented by john santu last updated on 13/Feb/20

Ostrogradski method. i will learn  this method

$$\mathrm{Ostrogradski}\:\mathrm{method}.\:\mathrm{i}\:\mathrm{will}\:\mathrm{learn} \\ $$$$\mathrm{this}\:\mathrm{method} \\ $$$$ \\ $$

Commented by abdomathmax last updated on 13/Feb/20

thank you sir mjs

$${thank}\:{you}\:{sir}\:{mjs} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com