Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 81485 by ajfour last updated on 13/Feb/20

Commented by ajfour last updated on 13/Feb/20

If area of region A is equal to  that of B, find eq. of parabola.

$${If}\:{area}\:{of}\:{region}\:{A}\:{is}\:{equal}\:{to} \\ $$$${that}\:{of}\:{B},\:{find}\:{eq}.\:{of}\:{parabola}. \\ $$

Commented by jagoll last updated on 13/Feb/20

area B = (1/4)π

$$\mathrm{area}\:\mathrm{B}\:=\:\frac{\mathrm{1}}{\mathrm{4}}\pi \\ $$

Commented by ajfour last updated on 13/Feb/20

how can you be so quick, MjS  Sir ?, thanks for answer.  Can we have an equation in  a yielding this answer, Sir?

$${how}\:{can}\:{you}\:{be}\:{so}\:{quick},\:{MjS} \\ $$$${Sir}\:?,\:{thanks}\:{for}\:{answer}. \\ $$$${Can}\:{we}\:{have}\:{an}\:{equation}\:{in} \\ $$$${a}\:{yielding}\:{this}\:{answer},\:{Sir}? \\ $$

Commented by MJS last updated on 13/Feb/20

approximation leads to  y=ax^2  with a≈.427395

$$\mathrm{approximation}\:\mathrm{leads}\:\mathrm{to} \\ $$$${y}={ax}^{\mathrm{2}} \:\mathrm{with}\:{a}\approx.\mathrm{427395} \\ $$

Commented by ajfour last updated on 13/Feb/20

and (b−1)^2 +ab^2 =1

$${and}\:\left({b}−\mathrm{1}\right)^{\mathrm{2}} +{ab}^{\mathrm{2}} =\mathrm{1} \\ $$

Commented by jagoll last updated on 13/Feb/20

area B = ∫^b _0 ((√(1−(1−x^2 )))−ax^2 ) dx = (π/4)

$$\mathrm{area}\:\mathrm{B}\:=\:\underset{\mathrm{0}} {\int}^{\mathrm{b}} \left(\sqrt{\mathrm{1}−\left(\mathrm{1}−\mathrm{x}^{\mathrm{2}} \right)}−\mathrm{ax}^{\mathrm{2}} \right)\:\mathrm{dx}\:=\:\frac{\pi}{\mathrm{4}} \\ $$

Commented by jagoll last updated on 13/Feb/20

typo

$$\mathrm{typo} \\ $$

Answered by mr W last updated on 13/Feb/20

circle: y=(√(1−(x−1)^2 ))  parabola: y=Ax^2   intersection at (h,Ah^2 )  Ah^2 =(√(1−(h−1)^2 ))=(√(h(2−h)))  ⇒A=(√((2−h)/h^3 ))  ∫_0 ^( h) ((√(1−(x−1)^2 ))−Ax^2 )dx=(π/4)  ∫_(−1) ^( h−1) (√(1−u^2 ))du−((Ah^3 )/3)=(π/4)  (1/2)[sin^(−1) u+u(√(1−u^2 ))]_(−1) ^(h−1) −((Ah^3 )/3)=(π/4)  (1/2)[sin^(−1) (h−1)+(h−1)(√(h(2−h)))]−((h(√(h(2−h))))/3)=0  ⇒sin^(−1) (h−1)=(((3−h)(√(h(2−h))))/3)  ⇒h≈1.446798  ⇒A≈0.427396

$${circle}:\:{y}=\sqrt{\mathrm{1}−\left({x}−\mathrm{1}\right)^{\mathrm{2}} } \\ $$$${parabola}:\:{y}={Ax}^{\mathrm{2}} \\ $$$${intersection}\:{at}\:\left({h},{Ah}^{\mathrm{2}} \right) \\ $$$${Ah}^{\mathrm{2}} =\sqrt{\mathrm{1}−\left({h}−\mathrm{1}\right)^{\mathrm{2}} }=\sqrt{{h}\left(\mathrm{2}−{h}\right)} \\ $$$$\Rightarrow{A}=\sqrt{\frac{\mathrm{2}−{h}}{{h}^{\mathrm{3}} }} \\ $$$$\int_{\mathrm{0}} ^{\:{h}} \left(\sqrt{\mathrm{1}−\left({x}−\mathrm{1}\right)^{\mathrm{2}} }−{Ax}^{\mathrm{2}} \right){dx}=\frac{\pi}{\mathrm{4}} \\ $$$$\int_{−\mathrm{1}} ^{\:{h}−\mathrm{1}} \sqrt{\mathrm{1}−{u}^{\mathrm{2}} }{du}−\frac{{Ah}^{\mathrm{3}} }{\mathrm{3}}=\frac{\pi}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{sin}^{−\mathrm{1}} {u}+{u}\sqrt{\mathrm{1}−{u}^{\mathrm{2}} }\right]_{−\mathrm{1}} ^{{h}−\mathrm{1}} −\frac{{Ah}^{\mathrm{3}} }{\mathrm{3}}=\frac{\pi}{\mathrm{4}} \\ $$$$\frac{\mathrm{1}}{\mathrm{2}}\left[\mathrm{sin}^{−\mathrm{1}} \left({h}−\mathrm{1}\right)+\left({h}−\mathrm{1}\right)\sqrt{{h}\left(\mathrm{2}−{h}\right)}\right]−\frac{{h}\sqrt{{h}\left(\mathrm{2}−{h}\right)}}{\mathrm{3}}=\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}^{−\mathrm{1}} \left({h}−\mathrm{1}\right)=\frac{\left(\mathrm{3}−{h}\right)\sqrt{{h}\left(\mathrm{2}−{h}\right)}}{\mathrm{3}} \\ $$$$\Rightarrow{h}\approx\mathrm{1}.\mathrm{446798} \\ $$$$\Rightarrow{A}\approx\mathrm{0}.\mathrm{427396} \\ $$

Commented by mr W last updated on 13/Feb/20

Commented by ajfour last updated on 13/Feb/20

Thanks Sir, perfect!

$${Thanks}\:{Sir},\:{perfect}! \\ $$

Answered by ajfour last updated on 13/Feb/20

Commented by ajfour last updated on 13/Feb/20

yellow line makes an ∠≈ 63.46°  with x-axis.

$${yellow}\:{line}\:{makes}\:{an}\:\angle\approx\:\mathrm{63}.\mathrm{46}° \\ $$$${with}\:{x}-{axis}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com