Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 81554 by jagoll last updated on 14/Feb/20

y′′′ +4y′ = 3x−1  what is solution

$${y}'''\:+\mathrm{4}{y}'\:=\:\mathrm{3}{x}−\mathrm{1} \\ $$$${what}\:{is}\:{solution} \\ $$

Answered by TANMAY PANACEA last updated on 14/Feb/20

let y=e^(mx)   be a solution so we get  y^′ =(dy/dx)=me^(mx) →y^(′′) =m^2 e^(mx)   y^(′′′) =m^3 e^(mx)   complemenary function  m^3 e^(mx) +4me^(mx) =0  e^(mx) ×m(m^2 +4)=0  e^(mx) ≠0  so  eithethe m=0 or m=2i or −2i  C.F=Ae^(0.x) +Be^(2ix) +Ce^(−2ix)   (A,B and C constant)  now  calculation of particular intregal  y=((3x−1)/(D^3 +4D))   where D=(d/dx)  y=(1/D).(1/(D^2 +4)).(3x−1)  y=(4+D^2 )^(−1) ×(((3x^2 )/2)−x)  y={4(1+(D^2 /4))}^(−1) ×(((3x^2 )/2)−x)  =(1/4)(1−(D^2 /4)+(D^4 /(16))+...)(((3x^2 )/2)−x)  note  (1+p)^(−1) =1−p+p^2 −p^3 +...∞    calculation  (1/4)(((3x^2 )/2)−x)−(D^2 /(16))(((3x^2 )/2)−x)+(D^4 /(64))(((3x^2 )/2)−x)..othester is zero  ((3x^2 )/8)−(x/4)−(3/(32))×2  =((3x^2 )/8)−(x/4)−(3/(16))        so compete solution  y=Ae^(0.x) +Be^(2ix) +Ce^(−2ix) +((3x^2 )/8)−(x/4)−(3/(16))  note..(1)we can put e^(ix) =cosx+isinx  e^(−ix) =cosx−isinx  and (A−(3/4))=K  new constant  pls check

$${let}\:{y}={e}^{{mx}} \:\:{be}\:{a}\:{solution}\:{so}\:{we}\:{get} \\ $$$${y}^{'} =\frac{{dy}}{{dx}}={me}^{{mx}} \rightarrow{y}^{''} ={m}^{\mathrm{2}} {e}^{{mx}} \\ $$$${y}^{'''} ={m}^{\mathrm{3}} {e}^{{mx}} \\ $$$${complemenary}\:{function} \\ $$$${m}^{\mathrm{3}} {e}^{{mx}} +\mathrm{4}{me}^{{mx}} =\mathrm{0} \\ $$$${e}^{{mx}} ×{m}\left({m}^{\mathrm{2}} +\mathrm{4}\right)=\mathrm{0} \\ $$$${e}^{{mx}} \neq\mathrm{0}\:\:{so} \\ $$$${eithethe}\:{m}=\mathrm{0}\:{or}\:{m}=\mathrm{2}{i}\:{or}\:−\mathrm{2}{i} \\ $$$$\boldsymbol{{C}}.\boldsymbol{{F}}={Ae}^{\mathrm{0}.{x}} +\boldsymbol{{B}}{e}^{\mathrm{2}{ix}} +\boldsymbol{{C}}{e}^{−\mathrm{2}{ix}} \:\:\left({A},{B}\:{and}\:{C}\:{constant}\right) \\ $$$${now} \\ $$$${calculation}\:{of}\:{particular}\:{intregal} \\ $$$${y}=\frac{\mathrm{3}{x}−\mathrm{1}}{{D}^{\mathrm{3}} +\mathrm{4}{D}}\:\:\:{where}\:{D}=\frac{{d}}{{dx}} \\ $$$${y}=\frac{\mathrm{1}}{{D}}.\frac{\mathrm{1}}{{D}^{\mathrm{2}} +\mathrm{4}}.\left(\mathrm{3}{x}−\mathrm{1}\right) \\ $$$${y}=\left(\mathrm{4}+{D}^{\mathrm{2}} \right)^{−\mathrm{1}} ×\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}−{x}\right) \\ $$$${y}=\left\{\mathrm{4}\left(\mathrm{1}+\frac{{D}^{\mathrm{2}} }{\mathrm{4}}\right)\right\}^{−\mathrm{1}} ×\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}−{x}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{4}}\left(\mathrm{1}−\frac{{D}^{\mathrm{2}} }{\mathrm{4}}+\frac{{D}^{\mathrm{4}} }{\mathrm{16}}+...\right)\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}−{x}\right) \\ $$$${note} \\ $$$$\left(\mathrm{1}+{p}\right)^{−\mathrm{1}} =\mathrm{1}−{p}+{p}^{\mathrm{2}} −{p}^{\mathrm{3}} +...\infty \\ $$$$ \\ $$$${calculation} \\ $$$$\frac{\mathrm{1}}{\mathrm{4}}\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}−{x}\right)−\frac{{D}^{\mathrm{2}} }{\mathrm{16}}\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}−{x}\right)+\frac{{D}^{\mathrm{4}} }{\mathrm{64}}\left(\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{2}}−{x}\right)..{othester}\:{is}\:{zero} \\ $$$$\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{8}}−\frac{{x}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{32}}×\mathrm{2} \\ $$$$=\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{8}}−\frac{{x}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{16}} \\ $$$$ \\ $$$$ \\ $$$$ \\ $$$${so}\:{compete}\:{solution} \\ $$$${y}={Ae}^{\mathrm{0}.{x}} +{Be}^{\mathrm{2}{ix}} +{Ce}^{−\mathrm{2}{ix}} +\frac{\mathrm{3}{x}^{\mathrm{2}} }{\mathrm{8}}−\frac{{x}}{\mathrm{4}}−\frac{\mathrm{3}}{\mathrm{16}} \\ $$$$\boldsymbol{{note}}..\left(\mathrm{1}\right)\boldsymbol{{we}}\:\boldsymbol{{can}}\:\boldsymbol{{put}}\:\boldsymbol{{e}}^{\boldsymbol{{ix}}} =\boldsymbol{{cosx}}+\boldsymbol{{isinx}} \\ $$$$\boldsymbol{{e}}^{−\boldsymbol{{ix}}} =\boldsymbol{{cosx}}−\boldsymbol{{isinx}} \\ $$$$\boldsymbol{{and}}\:\left(\boldsymbol{{A}}−\frac{\mathrm{3}}{\mathrm{4}}\right)={K}\:\:{new}\:{constant} \\ $$$${pls}\:{check} \\ $$$$ \\ $$$$ \\ $$

Commented by jagoll last updated on 14/Feb/20

can we get grades A,B and C mister?

$${can}\:{we}\:{get}\:{grades}\:{A},{B}\:{and}\:{C}\:{mister}? \\ $$

Commented by mr W last updated on 14/Feb/20

you gave only a d.e. without initial  conditions, so you can not determine  these constants. to determine A,B,C  you need three initial conditions such as  y(0)=...  y′(1)=...  y′′(2)=...

$${you}\:{gave}\:{only}\:{a}\:{d}.{e}.\:{without}\:{initial} \\ $$$${conditions},\:{so}\:{you}\:{can}\:{not}\:{determine} \\ $$$${these}\:{constants}.\:{to}\:{determine}\:{A},{B},{C} \\ $$$${you}\:{need}\:{three}\:{initial}\:{conditions}\:{such}\:{as} \\ $$$${y}\left(\mathrm{0}\right)=... \\ $$$${y}'\left(\mathrm{1}\right)=... \\ $$$${y}''\left(\mathrm{2}\right)=... \\ $$

Commented by jagoll last updated on 14/Feb/20

oo yes sir thank you

$${oo}\:{yes}\:{sir}\:{thank}\:{you} \\ $$

Answered by Joel578 last updated on 14/Feb/20

• homogeneous solution with characteristic eq.      λ^3  + 4λ = 0 ⇒ λ_1  = 0, λ_(2,3)  = ± 2i      ⇒ y_h (x) = C_1  + C_2  cos 2x + C_3  sin 2x    • particular solution      y_p  = Ax^2  + Bx + C     y_p ′ = 2Ax + B    y_p ′′ = 2A   y_p ′′′ = 0    Substitute to original question    0 + 4(2Ax + B) = 3x − 1  ⇒  { ((8A = 3)),((4B = −1)) :} ⇒  { ((A = (3/8))),((B = ((−1)/4))) :}  ⇒ y_p ′ = (3/4)x − (1/4)  ⇒ y_p  = (3/8)x^2  − (1/4)x + K    ∴ y(x) = y_h (x) + y_p (x)                  = C + C_2  cos 2x + C_3  sin 2x + (3/8)x^2  − (1/4)x

$$\bullet\:\mathrm{homogeneous}\:\mathrm{solution}\:\mathrm{with}\:\mathrm{characteristic}\:\mathrm{eq}. \\ $$$$\:\:\:\:\lambda^{\mathrm{3}} \:+\:\mathrm{4}\lambda\:=\:\mathrm{0}\:\Rightarrow\:\lambda_{\mathrm{1}} \:=\:\mathrm{0},\:\lambda_{\mathrm{2},\mathrm{3}} \:=\:\pm\:\mathrm{2}{i} \\ $$$$\:\:\:\:\Rightarrow\:{y}_{{h}} \left({x}\right)\:=\:{C}_{\mathrm{1}} \:+\:{C}_{\mathrm{2}} \:\mathrm{cos}\:\mathrm{2}{x}\:+\:{C}_{\mathrm{3}} \:\mathrm{sin}\:\mathrm{2}{x} \\ $$$$ \\ $$$$\bullet\:\mathrm{particular}\:\mathrm{solution} \\ $$$$\:\:\:\:{y}_{{p}} \:=\:{Ax}^{\mathrm{2}} \:+\:{Bx}\:+\:{C} \\ $$$$\:\:\:{y}_{{p}} '\:=\:\mathrm{2}{Ax}\:+\:{B} \\ $$$$\:\:{y}_{{p}} ''\:=\:\mathrm{2}{A} \\ $$$$\:{y}_{{p}} '''\:=\:\mathrm{0} \\ $$$$\:\:\mathrm{Substitute}\:\mathrm{to}\:\mathrm{original}\:\mathrm{question} \\ $$$$\:\:\mathrm{0}\:+\:\mathrm{4}\left(\mathrm{2}{Ax}\:+\:{B}\right)\:=\:\mathrm{3}{x}\:−\:\mathrm{1} \\ $$$$\Rightarrow\:\begin{cases}{\mathrm{8}{A}\:=\:\mathrm{3}}\\{\mathrm{4}{B}\:=\:−\mathrm{1}}\end{cases}\:\Rightarrow\:\begin{cases}{{A}\:=\:\frac{\mathrm{3}}{\mathrm{8}}}\\{{B}\:=\:\frac{−\mathrm{1}}{\mathrm{4}}}\end{cases} \\ $$$$\Rightarrow\:{y}_{{p}} '\:=\:\frac{\mathrm{3}}{\mathrm{4}}{x}\:−\:\frac{\mathrm{1}}{\mathrm{4}}\:\:\Rightarrow\:{y}_{{p}} \:=\:\frac{\mathrm{3}}{\mathrm{8}}{x}^{\mathrm{2}} \:−\:\frac{\mathrm{1}}{\mathrm{4}}{x}\:+\:{K} \\ $$$$ \\ $$$$\therefore\:{y}\left({x}\right)\:=\:{y}_{{h}} \left({x}\right)\:+\:{y}_{{p}} \left({x}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\:{C}\:+\:{C}_{\mathrm{2}} \:\mathrm{cos}\:\mathrm{2}{x}\:+\:{C}_{\mathrm{3}} \:\mathrm{sin}\:\mathrm{2}{x}\:+\:\frac{\mathrm{3}}{\mathrm{8}}{x}^{\mathrm{2}} \:−\:\frac{\mathrm{1}}{\mathrm{4}}{x} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com