Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 81636 by jagoll last updated on 14/Feb/20

∫ ((x(tan^(−1) (x))^2 )/((1+x^2 )^(3/2) )) dx =

x(tan1(x))2(1+x2)32dx=

Commented by mind is power last updated on 14/Feb/20

=∫((tg(s)s^2 )/((1+tg^2 (s))^(1/2) ))ds   s=tan^− (x)  =∫s^2 sin(s)ds easy too find now

=tg(s)s2(1+tg2(s))12dss=tan(x)=s2sin(s)dseasytoofindnow

Commented by jagoll last updated on 14/Feb/20

what is tg sir? tan ?

whatistgsir?tan?

Commented by peter frank last updated on 14/Feb/20

yes tangent

yestangent

Commented by mathmax by abdo last updated on 14/Feb/20

changement x=tanθ give   I =∫((tanθ ×θ^2 )/((1+tan^2 θ)^(3/2) ))(1+tan^2 θ)dθ =∫ ((θ^2  tanθ)/(√(1+tan^2 θ)))  I=∫ θ^2 tanθ cosθ dθ =∫ θ^2 sinθ dθ  =_(byparts)   −θ^2 cosθ +∫  2θ cosθ dθ =−θ^2  cosθ +2 {  θ sinθ −∫ sinθ}  =−θ^2  cosθ +2θ sinθ +2cosθ =(2−θ^2 )cosθ +2θ sinθ +C  =(2−arctanx)cos(artanx)+2 arctan(x)sin(arctanx) +C  =((2−arctanx)/(√(1+x^2 ))) +((2x arctanx)/(√(1+x^2 ))) +C

changementx=tanθgiveI=tanθ×θ2(1+tan2θ)32(1+tan2θ)dθ=θ2tanθ1+tan2θI=θ2tanθcosθdθ=θ2sinθdθ=bypartsθ2cosθ+2θcosθdθ=θ2cosθ+2{θsinθsinθ}=θ2cosθ+2θsinθ+2cosθ=(2θ2)cosθ+2θsinθ+C=(2arctanx)cos(artanx)+2arctan(x)sin(arctanx)+C=2arctanx1+x2+2xarctanx1+x2+C

Terms of Service

Privacy Policy

Contact: info@tinkutara.com