Question and Answers Forum

All Questions      Topic List

UNKNOWN Questions

Previous in All Question      Next in All Question      

Previous in UNKNOWN      Next in UNKNOWN      

Question Number 81672 by zainal tanjung last updated on 14/Feb/20

If x ∈ R, the least value of the  expression ((x^2 −6x+5)/(x^2 +2x+1)) is

IfxR,theleastvalueoftheexpressionx26x+5x2+2x+1is

Commented by Kunal12588 last updated on 14/Feb/20

y=(((x−5)(x−1))/((x+1)^2 ))  (dy/dx)=(((x+1)^2 [(x−5)+(x−1)]−(x−5)(x−1)[2(x+1)])/((x+1)^4 ))  ⇒(dy/dx)=((2(x^2 +2x+1)(x−3)−2(x−5)(x^2 −1))/((x+1)^4 ))  ⇒(dy/dx)=((2[x^3 +2x^2 +x−3x^2 −6x−3−(x^3 −5x^2 −x+5)])/((x+1)^4 ))  ⇒(dy/dx)=((2(4x^2 −4x−8))/((x+1)^4 ))  ⇒(dy/dx)=((8(x^2 −x−2))/((x+1)^4 ))  ⇒(dy/dx)=((8(x−2)(x+1))/((x+1)^4 ))  for max or min  (dy/dx)=0⇒x=2, x≠−1  (d^2 y/dx^2 )>0 when x=2  y_(local min) =(((2−5)(2−1))/((2+1)^2 ))=((−3)/3^2 )=−(1/3)=−0.3^(−)

y=(x5)(x1)(x+1)2dydx=(x+1)2[(x5)+(x1)](x5)(x1)[2(x+1)](x+1)4dydx=2(x2+2x+1)(x3)2(x5)(x21)(x+1)4dydx=2[x3+2x2+x3x26x3(x35x2x+5)](x+1)4dydx=2(4x24x8)(x+1)4dydx=8(x2x2)(x+1)4dydx=8(x2)(x+1)(x+1)4formaxormindydx=0x=2,x1d2ydx2>0whenx=2ylocalmin=(25)(21)(2+1)2=332=13=0.3

Commented by Tony Lin last updated on 14/Feb/20

let  ((x^2 −6x+5)/(x^2 +2x+1))=k  ⇒x^2 −6x+5=kx^2 +2kx+k  ⇒(k−1)x^2 +(2k+6)x+(k−5)=0  Δ=(2k+6)^2 −4(k−1)(k−5)=0  ⇒k=−(1/3) when x=2  ((x^2 −6x+5)/(x^2 +2x+1))=−(1/3)min

letx26x+5x2+2x+1=kx26x+5=kx2+2kx+k(k1)x2+(2k+6)x+(k5)=0Δ=(2k+6)24(k1)(k5)=0k=13whenx=2x26x+5x2+2x+1=13min

Commented by mathmax by abdo last updated on 14/Feb/20

f(x)=((x^2 +2x+1−8x+4)/(x^2  +2x+1)) =1+((4−8x)/(x^2  +2x+1)) ⇒  f^′ (x)=−4(((2x−1)/(x^2  +2x+1)))^((1)) =−4(((2(x^2 +2x+1)−(2x−1)(2x+2))/((x^2  +2x+1)^2 )))  =−4×((2x^2  +4x+2−4x^2 −4x+2x+2)/((x+1)^4 ))=−4×((−2x^2 +2x+4)/((x+1)^4 ))  =8×((x^2 −x−2)/((x+1)^4 )) so f^′ (x)=0 ⇔x^2 −x−2=0 and x≠−1  Δ=1−4(−2)=9 ⇒x_1 =((1+3)/2)=2 and x_2 =((1−3)/2)=−1  x              −∞                     −1                   2             +∞  f^′                                  +          ∣∣         −       0       +  f                             incr                 decr     f(2)         incr  inf f(x) =f(2)=((4−12+5)/(4+4+1)) =((−3)/9) =−(1/3)

f(x)=x2+2x+18x+4x2+2x+1=1+48xx2+2x+1f(x)=4(2x1x2+2x+1)(1)=4(2(x2+2x+1)(2x1)(2x+2)(x2+2x+1)2)=4×2x2+4x+24x24x+2x+2(x+1)4=4×2x2+2x+4(x+1)4=8×x2x2(x+1)4sof(x)=0x2x2=0andx1Δ=14(2)=9x1=1+32=2andx2=132=1x12+f+∣∣0+fincrdecrf(2)incrinff(x)=f(2)=412+54+4+1=39=13

Terms of Service

Privacy Policy

Contact: info@tinkutara.com