All Questions Topic List
UNKNOWN Questions
Previous in All Question Next in All Question
Previous in UNKNOWN Next in UNKNOWN
Question Number 81672 by zainal tanjung last updated on 14/Feb/20
Ifx∈R,theleastvalueoftheexpressionx2−6x+5x2+2x+1is
Commented by Kunal12588 last updated on 14/Feb/20
y=(x−5)(x−1)(x+1)2dydx=(x+1)2[(x−5)+(x−1)]−(x−5)(x−1)[2(x+1)](x+1)4⇒dydx=2(x2+2x+1)(x−3)−2(x−5)(x2−1)(x+1)4⇒dydx=2[x3+2x2+x−3x2−6x−3−(x3−5x2−x+5)](x+1)4⇒dydx=2(4x2−4x−8)(x+1)4⇒dydx=8(x2−x−2)(x+1)4⇒dydx=8(x−2)(x+1)(x+1)4formaxormindydx=0⇒x=2,x≠−1d2ydx2>0whenx=2ylocalmin=(2−5)(2−1)(2+1)2=−332=−13=−0.3―
Commented by Tony Lin last updated on 14/Feb/20
letx2−6x+5x2+2x+1=k⇒x2−6x+5=kx2+2kx+k⇒(k−1)x2+(2k+6)x+(k−5)=0Δ=(2k+6)2−4(k−1)(k−5)=0⇒k=−13whenx=2x2−6x+5x2+2x+1=−13min
Commented by mathmax by abdo last updated on 14/Feb/20
f(x)=x2+2x+1−8x+4x2+2x+1=1+4−8xx2+2x+1⇒f′(x)=−4(2x−1x2+2x+1)(1)=−4(2(x2+2x+1)−(2x−1)(2x+2)(x2+2x+1)2)=−4×2x2+4x+2−4x2−4x+2x+2(x+1)4=−4×−2x2+2x+4(x+1)4=8×x2−x−2(x+1)4sof′(x)=0⇔x2−x−2=0andx≠−1Δ=1−4(−2)=9⇒x1=1+32=2andx2=1−32=−1x−∞−12+∞f′+∣∣−0+fincrdecrf(2)incrinff(x)=f(2)=4−12+54+4+1=−39=−13
Terms of Service
Privacy Policy
Contact: info@tinkutara.com