Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 81684 by naka3546 last updated on 14/Feb/20

∫   (dx/(x^3  + 1))  =  ...

dxx3+1=...

Commented by Tony Lin last updated on 14/Feb/20

∫ (dx/(x^3 +1))  =∫(dx/((x+1)(x^2 −x+1)))  =(1/3)∫(1/(x+1  ))dx−(1/3)∫((x−2)/(x^2 −x+1))dx  =(1/3)ln∣x+1∣−(1/3)[∫(((1/2)(2x−1))/(x^2 −x+1)) dx−(3/2)∫(dx/((x−(1/2))^2 +(3/4)))]  =(1/3)ln∣x+1∣−(1/6)ln∣x^2 −x+1∣+(√3)tan^(−1) (((2x−1)/(√3)))+c

dxx3+1=dx(x+1)(x2x+1)=131x+1dx13x2x2x+1dx=13lnx+113[12(2x1)x2x+1dx32dx(x12)2+34]=13lnx+116lnx2x+1+3tan1(2x13)+c

Answered by TANMAY PANACEA last updated on 14/Feb/20

∫(dx/((x+1)(x^2 −x+1)))=∫(a/(x+1))dx+∫((bx+c)/(x^2 −x+1))dx  now  (1/(x^3 +1))=((ax^2 −ax+a+bx^2 +bx+cx+c)/(x^3 +1))  1=x^2 (a+b)+x(−a+b+c)+a+c  a+b=0  −a+b+c=0  a+c=1    −a+(−a)+(1−a)=0  a=(1/3)    b=((−1)/3)   c=(2/3)  ∫((1/3)/(x+1))dx+∫((((−1)/3)x+(2/3))/(x^2 −x+1))dx  (1/3)∫(dx/(x+1))−(1/3)∫((x−2)/(x^2 −x+1))dx  (1/3)∫(dx/(x+1))−(1/6)∫((2x−1−3)/(x^2 −x+1))dx  (1/3)∫(dx/(x+1))−(1/6)∫((d(x^2 −x+1))/(x^2 −x+1))+(1/2)∫(dx/(x^2 −2.x.(1/2)+(1/4)+(3/4)))  (1/3)∫(dx/(x+1))−(1/6)∫((d(x^2 −x+1))/(x^2 −x+1))+(1/2)∫(dx/((x−(1/2))^2 +(((√3)/2))^2 ))  (1/3)ln(x+1)−(1/6)ln(x^2 −x+1)+(1/2)×(2/(√3))tan^(−1) (((x−(1/2))/((√3)/2)))  pls check

dx(x+1)(x2x+1)=ax+1dx+bx+cx2x+1dxnow1x3+1=ax2ax+a+bx2+bx+cx+cx3+11=x2(a+b)+x(a+b+c)+a+ca+b=0a+b+c=0a+c=1a+(a)+(1a)=0a=13b=13c=2313x+1dx+13x+23x2x+1dx13dxx+113x2x2x+1dx13dxx+1162x13x2x+1dx13dxx+116d(x2x+1)x2x+1+12dxx22.x.12+14+3413dxx+116d(x2x+1)x2x+1+12dx(x12)2+(32)213ln(x+1)16ln(x2x+1)+12×23tan1(x1232)plscheck

Commented by peter frank last updated on 14/Feb/20

welcom again mr tanymay,....  long time

welcomagainmrtanymay,....longtime

Terms of Service

Privacy Policy

Contact: info@tinkutara.com