All Questions Topic List
None Questions
Previous in All Question Next in All Question
Previous in None Next in None
Question Number 81733 by naka3546 last updated on 15/Feb/20
∑∞n=1n(n+1)⋅5n=?
Commented by mr W last updated on 15/Feb/20
11−x=1+x+x2+x3+...=∑∞n=0xn1(1−x)2=∑∞n=1nxn−1x(1−x)2=∑∞n=1nxn∫0xx(1−x)2dx=∑∞n=1n∫0xxndx[ln(1−x)+11−x]0x=∑∞n=1nxn+1n+1ln(1−x)+x1−x=∑∞n=1nxn+1n+1ln(1−x)x+11−x=∑∞n=1nxnn+1x=155(ln45+14)=∑∞n=1n(n+1)5n
Commented by mathmax by abdo last updated on 15/Feb/20
S=∑n=1∞n+1−1(n+1)5n=∑n=1∞15n−∑n=1∞1(n+1)5n∑n=1∞15n=∑n=0∞(15)n−1=11−15−1=54−1=14∑n=1∞1(n+1)5n=∑n=2∞1n5n−1=5∑n=2∞1n(15)n=5{∑n=1∞1n(15)n−15}letfindw(x)=∑n=1∞xnn{with∣x∣<1}w′(x)=∑n=1∞xn−1=∑n=0∞xn=11−x⇒w(x)=−ln(1−x)+cc=w(0)=0⇒w(x)=−ln(1−x)⇒∑n=1∞1(n+1)5n=5(−ln(1−15))−1=−5ln(45)−1⇒S=14+5ln(45)+1=54+5ln(45)
Terms of Service
Privacy Policy
Contact: info@tinkutara.com