Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 81801 by Power last updated on 15/Feb/20

Commented by mathmax by abdo last updated on 16/Feb/20

changement x^n  =cos^2 t give x =(cost)^(2/n)  ⇒dx =−(2/n)sint (cost)^((2/n)−1)   ⇒∫_0 ^1  (dx/((^n (√(1−x^n ))))) =(2/n)∫_0 ^(π/2)  ((sint)/((^n (√(1−cos^2 t)))))(cost)^((2/n)−1)  dt  =(2/n) ∫_0 ^(π/2)   ((sint)/(sint^(2/n) )) (cost)^((2/n)−1)  dt =(2/n) ∫_0 ^(π/2)  (sint)^(1−(2/n))  (cost)^((2/n)−1)  dt  we have the formula    2 ∫_0 ^(π/2) (cost)^(2p−1)  (sint)^(2q−1)  =B(p,q)  =((Γ(p)Γ(q))/(Γ(p+q))) ⇒∫_0 ^1  (dx/((^n (√(1−x^n ))))) =(2/n)∫_0 ^(π/2)  (sint)^(2(1−(1/n))−1) (cost)^((2/n)−1)  dt  =(1/n) B(1−(1/n),(1/n)) =(1/n)×((Γ(1−(1/n))Γ((1/n)))/(Γ(1−(1/n) +(1/n))))=(1/n)×(π/(sin((π/n))))=(π/(nsin((π/n))))

$${changement}\:{x}^{{n}} \:={cos}^{\mathrm{2}} {t}\:{give}\:{x}\:=\left({cost}\right)^{\frac{\mathrm{2}}{{n}}} \:\Rightarrow{dx}\:=−\frac{\mathrm{2}}{{n}}{sint}\:\left({cost}\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\left(^{{n}} \sqrt{\mathrm{1}−{x}^{{n}} }\right)}\:=\frac{\mathrm{2}}{{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\frac{{sint}}{\left(^{{n}} \sqrt{\mathrm{1}−{cos}^{\mathrm{2}} {t}}\right)}\left({cost}\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} \:{dt} \\ $$$$=\frac{\mathrm{2}}{{n}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\:\frac{{sint}}{{sint}^{\frac{\mathrm{2}}{{n}}} }\:\left({cost}\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} \:{dt}\:=\frac{\mathrm{2}}{{n}}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sint}\right)^{\mathrm{1}−\frac{\mathrm{2}}{{n}}} \:\left({cost}\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} \:{dt} \\ $$$${we}\:{have}\:{the}\:{formula}\:\:\:\:\mathrm{2}\:\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({cost}\right)^{\mathrm{2}{p}−\mathrm{1}} \:\left({sint}\right)^{\mathrm{2}{q}−\mathrm{1}} \:={B}\left({p},{q}\right) \\ $$$$=\frac{\Gamma\left({p}\right)\Gamma\left({q}\right)}{\Gamma\left({p}+{q}\right)}\:\Rightarrow\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{dx}}{\left(^{{n}} \sqrt{\left.\mathrm{1}−{x}^{{n}} \right)}\right.}\:=\frac{\mathrm{2}}{{n}}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \:\left({sint}\right)^{\mathrm{2}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)−\mathrm{1}} \left({cost}\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} \:{dt} \\ $$$$=\frac{\mathrm{1}}{{n}}\:{B}\left(\mathrm{1}−\frac{\mathrm{1}}{{n}},\frac{\mathrm{1}}{{n}}\right)\:=\frac{\mathrm{1}}{{n}}×\frac{\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)\Gamma\left(\frac{\mathrm{1}}{{n}}\right)}{\Gamma\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\:+\frac{\mathrm{1}}{{n}}\right)}=\frac{\mathrm{1}}{{n}}×\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)}=\frac{\pi}{{nsin}\left(\frac{\pi}{{n}}\right)} \\ $$

Answered by TANMAY PANACEA last updated on 15/Feb/20

x^n =sin^2 θ→x=(sinθ)^(2/n)   dx=(2/n)(sinθ)^((2/n)−1) cosθ dθ  ∫_0 ^(π/2) (((2/n)(sinθ)^((2/n)−1) cosθdθ)/((cosθ)^(2/n) ))  (1/n)×2∫_0 ^(π/2) (sinθ)^((2/n)−1) .(cosθ)^(1−(2/n)) dθ  formula   2∫_0 ^(π/2) (sinθ)^(2p−1) (cosθ)^(2q−1) dθ=((⌈(p)⌈(q))/(⌈(p+q)))  2p−1=(2/n)−1→p=(1/n)  2q−1=1−(2/(n ))→q=1−(1/n)  p+q=1  so =((⌈((1/n))⌈(1−(1/n)))/(⌈(1)))=(π/(sin((π/n))))  answer is =(1/n)×(π/(sin((π/n))))    formula ⌈(p)⌈(1−p)=(π/(sin(pπ)))  pls check mistake if any

$${x}^{{n}} ={sin}^{\mathrm{2}} \theta\rightarrow{x}=\left({sin}\theta\right)^{\frac{\mathrm{2}}{{n}}} \\ $$$${dx}=\frac{\mathrm{2}}{{n}}\left({sin}\theta\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} {cos}\theta\:{d}\theta \\ $$$$\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \frac{\frac{\mathrm{2}}{{n}}\left({sin}\theta\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} {cos}\theta{d}\theta}{\left({cos}\theta\right)^{\frac{\mathrm{2}}{{n}}} } \\ $$$$\frac{\mathrm{1}}{{n}}×\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sin}\theta\right)^{\frac{\mathrm{2}}{{n}}−\mathrm{1}} .\left({cos}\theta\right)^{\mathrm{1}−\frac{\mathrm{2}}{{n}}} {d}\theta \\ $$$${formula}\: \\ $$$$\mathrm{2}\int_{\mathrm{0}} ^{\frac{\pi}{\mathrm{2}}} \left({sin}\theta\right)^{\mathrm{2}{p}−\mathrm{1}} \left({cos}\theta\right)^{\mathrm{2}{q}−\mathrm{1}} {d}\theta=\frac{\lceil\left({p}\right)\lceil\left({q}\right)}{\lceil\left({p}+{q}\right)} \\ $$$$\mathrm{2}{p}−\mathrm{1}=\frac{\mathrm{2}}{{n}}−\mathrm{1}\rightarrow{p}=\frac{\mathrm{1}}{{n}} \\ $$$$\mathrm{2}{q}−\mathrm{1}=\mathrm{1}−\frac{\mathrm{2}}{{n}\:}\rightarrow{q}=\mathrm{1}−\frac{\mathrm{1}}{{n}} \\ $$$${p}+{q}=\mathrm{1} \\ $$$${so}\:=\frac{\lceil\left(\frac{\mathrm{1}}{{n}}\right)\lceil\left(\mathrm{1}−\frac{\mathrm{1}}{{n}}\right)}{\lceil\left(\mathrm{1}\right)}=\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)} \\ $$$${answer}\:{is}\:=\frac{\mathrm{1}}{{n}}×\frac{\pi}{{sin}\left(\frac{\pi}{{n}}\right)} \\ $$$$ \\ $$$${formula}\:\lceil\left({p}\right)\lceil\left(\mathrm{1}−{p}\right)=\frac{\pi}{{sin}\left({p}\pi\right)} \\ $$$$\boldsymbol{{pls}}\:\boldsymbol{{check}}\:\boldsymbol{{mistake}}\:\boldsymbol{{if}}\:\boldsymbol{{any}} \\ $$

Commented by Power last updated on 15/Feb/20

⌈ − ???

$$\lceil\:−\:??? \\ $$

Commented by Tony Lin last updated on 15/Feb/20

Γ(gamma function)

$$\Gamma\left({gamma}\:{function}\right) \\ $$

Commented by TANMAY PANACEA last updated on 15/Feb/20

yes sir thank you...i forgot to mention ⌈ represent  gamma function

$${yes}\:{sir}\:{thank}\:{you}...{i}\:{forgot}\:{to}\:{mention}\:\lceil\:{represent} \\ $$$${gamma}\:{function} \\ $$

Commented by Power last updated on 15/Feb/20

thanks

$$\mathrm{thanks} \\ $$

Commented by mathmax by abdo last updated on 16/Feb/20

you answer is correct sir tanmay

$${you}\:{answer}\:{is}\:{correct}\:{sir}\:{tanmay} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com