Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 81804 by ajfour last updated on 15/Feb/20

Commented by ajfour last updated on 15/Feb/20

If tension in string, T=((mg)/5)  and rod rests in equilibrium,  find length of string.

$${If}\:{tension}\:{in}\:{string},\:{T}=\frac{{mg}}{\mathrm{5}} \\ $$$${and}\:{rod}\:{rests}\:{in}\:{equilibrium}, \\ $$$${find}\:{length}\:{of}\:{string}. \\ $$

Answered by mr W last updated on 15/Feb/20

Commented by mr W last updated on 16/Feb/20

β+θ=(π/2)−α  ⇒β=(π/2)−(θ+α)  γ+θ=(π/2)+α  ⇒γ=(π/2)−(θ−α)    ((BD)/(sin γ))=((DC)/(sin β))=((BC)/(sin 2θ))  BD=((L sin γ)/(2 sin 2θ))=((L cos (θ−α))/(2 sin 2θ))  DC=((L sin β)/(2 sin 2θ))=((L cos (θ+α))/(2 sin 2θ))  l=BD+DC=((L[cos (θ−α)+cos (θ+α)])/(2 sin 2θ))  ⇒l=((L cos α)/(2 sin θ))   ...(iii)    BD sin θ=e cos α  ((L cos (θ−α) sin θ)/(2 sin 2θ))=e cos α  e=((L cos (θ−α))/(4 cos θ cos α))=(L/4)(1+tan θ tan α)    let T=((mg)/τ) with τ=5 given  F=2T cos θ  F((L/2)+e)=mg×(L/2)  ⇒3 cos θ+sin θ tan α=τ   ...(i)    ((L sin α)/2)+BD×cos θ=h  2 sin α+((cos (θ−α))/(sin θ))=((4h)/L)  with η=(h/L)  ⇒3 sin α+((cos α)/(tan θ))=4η   ...(ii)    from (i):  (3/(√(9+tan^2  α))) cos θ+sin θ ((tan α)/(√(9+tan^2  α)))=(τ/(√(9+tan^2  α)))  cos (θ−φ)=(τ/(√(9+tan^2  α))) with tan φ=((tan α)/3)  ⇒θ=tan^(−1) (((tan α)/3))+cos^(−1) ((τ/(√(9+tan^2  α))))  put this into (ii) we can get α.    with α and θ, we get the length of  the string acc. to (iii): l=((L cos α)/(2 sin θ)).    example: τ=((mg)/T)=3, η=(h/L)=(4/5)=0.80  ⇒α=39.6988°  ⇒θ=30.9364°  ⇒l=3.7416m  ===================  if string length l is given, find T=?  from (iii) we get  ((cos α)/(sin θ))=((2l)/L)=λ  ⇒sin θ=((cos α)/λ)  put this into (ii):  3 sin α+(√(λ^2 −cos^2  α))=4η  (√(λ^2 −1+sin^2  α))=4η−3 sin α  8 sin^2  α−24η sin α+16η^2 +1−λ^2 =0  ⇒sin α=((6η−(√(2(2η^2 +λ^2 −1))))/4)  with α and θ we can get from (i):  τ=3 cos θ+sin θ tan α  ⇒τ=(1/λ)(3(√(λ^2 −1+sin^2  α))+sin α)    example: L=4m, h=3m, l=3m  η=(h/L)=(3/4)=0.75, λ=((2l)/L)=(6/4)=1.5  sin α=((6η−(√(2(2η^2 +λ^2 −1))))/4)=0.580137  ⇒τ=2.905932  ⇒T=((mg)/τ)=0.344mg

$$\beta+\theta=\frac{\pi}{\mathrm{2}}−\alpha \\ $$$$\Rightarrow\beta=\frac{\pi}{\mathrm{2}}−\left(\theta+\alpha\right) \\ $$$$\gamma+\theta=\frac{\pi}{\mathrm{2}}+\alpha \\ $$$$\Rightarrow\gamma=\frac{\pi}{\mathrm{2}}−\left(\theta−\alpha\right) \\ $$$$ \\ $$$$\frac{{BD}}{\mathrm{sin}\:\gamma}=\frac{{DC}}{\mathrm{sin}\:\beta}=\frac{{BC}}{\mathrm{sin}\:\mathrm{2}\theta} \\ $$$${BD}=\frac{{L}\:\mathrm{sin}\:\gamma}{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta}=\frac{{L}\:\mathrm{cos}\:\left(\theta−\alpha\right)}{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta} \\ $$$${DC}=\frac{{L}\:\mathrm{sin}\:\beta}{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta}=\frac{{L}\:\mathrm{cos}\:\left(\theta+\alpha\right)}{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta} \\ $$$${l}={BD}+{DC}=\frac{{L}\left[\mathrm{cos}\:\left(\theta−\alpha\right)+\mathrm{cos}\:\left(\theta+\alpha\right)\right]}{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta} \\ $$$$\Rightarrow{l}=\frac{{L}\:\mathrm{cos}\:\alpha}{\mathrm{2}\:\mathrm{sin}\:\theta}\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$${BD}\:\mathrm{sin}\:\theta={e}\:\mathrm{cos}\:\alpha \\ $$$$\frac{{L}\:\mathrm{cos}\:\left(\theta−\alpha\right)\:\mathrm{sin}\:\theta}{\mathrm{2}\:\mathrm{sin}\:\mathrm{2}\theta}={e}\:\mathrm{cos}\:\alpha \\ $$$${e}=\frac{{L}\:\mathrm{cos}\:\left(\theta−\alpha\right)}{\mathrm{4}\:\mathrm{cos}\:\theta\:\mathrm{cos}\:\alpha}=\frac{{L}}{\mathrm{4}}\left(\mathrm{1}+\mathrm{tan}\:\theta\:\mathrm{tan}\:\alpha\right) \\ $$$$ \\ $$$${let}\:{T}=\frac{{mg}}{\tau}\:{with}\:\tau=\mathrm{5}\:{given} \\ $$$${F}=\mathrm{2}{T}\:\mathrm{cos}\:\theta \\ $$$${F}\left(\frac{{L}}{\mathrm{2}}+{e}\right)={mg}×\frac{{L}}{\mathrm{2}} \\ $$$$\Rightarrow\mathrm{3}\:\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\:\mathrm{tan}\:\alpha=\tau\:\:\:...\left({i}\right) \\ $$$$ \\ $$$$\frac{{L}\:\mathrm{sin}\:\alpha}{\mathrm{2}}+{BD}×\mathrm{cos}\:\theta={h} \\ $$$$\mathrm{2}\:\mathrm{sin}\:\alpha+\frac{\mathrm{cos}\:\left(\theta−\alpha\right)}{\mathrm{sin}\:\theta}=\frac{\mathrm{4}{h}}{{L}} \\ $$$${with}\:\eta=\frac{{h}}{{L}} \\ $$$$\Rightarrow\mathrm{3}\:\mathrm{sin}\:\alpha+\frac{\mathrm{cos}\:\alpha}{\mathrm{tan}\:\theta}=\mathrm{4}\eta\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right): \\ $$$$\frac{\mathrm{3}}{\sqrt{\mathrm{9}+\mathrm{tan}^{\mathrm{2}} \:\alpha}}\:\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\:\frac{\mathrm{tan}\:\alpha}{\sqrt{\mathrm{9}+\mathrm{tan}^{\mathrm{2}} \:\alpha}}=\frac{\tau}{\sqrt{\mathrm{9}+\mathrm{tan}^{\mathrm{2}} \:\alpha}} \\ $$$$\mathrm{cos}\:\left(\theta−\phi\right)=\frac{\tau}{\sqrt{\mathrm{9}+\mathrm{tan}^{\mathrm{2}} \:\alpha}}\:{with}\:\mathrm{tan}\:\phi=\frac{\mathrm{tan}\:\alpha}{\mathrm{3}} \\ $$$$\Rightarrow\theta=\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{tan}\:\alpha}{\mathrm{3}}\right)+\mathrm{cos}^{−\mathrm{1}} \left(\frac{\tau}{\sqrt{\mathrm{9}+\mathrm{tan}^{\mathrm{2}} \:\alpha}}\right) \\ $$$${put}\:{this}\:{into}\:\left({ii}\right)\:{we}\:{can}\:{get}\:\alpha. \\ $$$$ \\ $$$${with}\:\alpha\:{and}\:\theta,\:{we}\:{get}\:{the}\:{length}\:{of} \\ $$$${the}\:{string}\:{acc}.\:{to}\:\left({iii}\right):\:{l}=\frac{{L}\:\mathrm{cos}\:\alpha}{\mathrm{2}\:\mathrm{sin}\:\theta}. \\ $$$$ \\ $$$${example}:\:\tau=\frac{{mg}}{{T}}=\mathrm{3},\:\eta=\frac{{h}}{{L}}=\frac{\mathrm{4}}{\mathrm{5}}=\mathrm{0}.\mathrm{80} \\ $$$$\Rightarrow\alpha=\mathrm{39}.\mathrm{6988}° \\ $$$$\Rightarrow\theta=\mathrm{30}.\mathrm{9364}° \\ $$$$\Rightarrow{l}=\mathrm{3}.\mathrm{7416}{m} \\ $$$$=================== \\ $$$${if}\:{string}\:{length}\:{l}\:{is}\:{given},\:{find}\:{T}=? \\ $$$${from}\:\left({iii}\right)\:{we}\:{get} \\ $$$$\frac{\mathrm{cos}\:\alpha}{\mathrm{sin}\:\theta}=\frac{\mathrm{2}{l}}{{L}}=\lambda \\ $$$$\Rightarrow\mathrm{sin}\:\theta=\frac{\mathrm{cos}\:\alpha}{\lambda} \\ $$$${put}\:{this}\:{into}\:\left({ii}\right): \\ $$$$\mathrm{3}\:\mathrm{sin}\:\alpha+\sqrt{\lambda^{\mathrm{2}} −\mathrm{cos}^{\mathrm{2}} \:\alpha}=\mathrm{4}\eta \\ $$$$\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\alpha}=\mathrm{4}\eta−\mathrm{3}\:\mathrm{sin}\:\alpha \\ $$$$\mathrm{8}\:\mathrm{sin}^{\mathrm{2}} \:\alpha−\mathrm{24}\eta\:\mathrm{sin}\:\alpha+\mathrm{16}\eta^{\mathrm{2}} +\mathrm{1}−\lambda^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow\mathrm{sin}\:\alpha=\frac{\mathrm{6}\eta−\sqrt{\mathrm{2}\left(\mathrm{2}\eta^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{1}\right)}}{\mathrm{4}} \\ $$$${with}\:\alpha\:{and}\:\theta\:{we}\:{can}\:{get}\:{from}\:\left({i}\right): \\ $$$$\tau=\mathrm{3}\:\mathrm{cos}\:\theta+\mathrm{sin}\:\theta\:\mathrm{tan}\:\alpha \\ $$$$\Rightarrow\tau=\frac{\mathrm{1}}{\lambda}\left(\mathrm{3}\sqrt{\lambda^{\mathrm{2}} −\mathrm{1}+\mathrm{sin}^{\mathrm{2}} \:\alpha}+\mathrm{sin}\:\alpha\right) \\ $$$$ \\ $$$${example}:\:{L}=\mathrm{4}{m},\:{h}=\mathrm{3}{m},\:{l}=\mathrm{3}{m} \\ $$$$\eta=\frac{{h}}{{L}}=\frac{\mathrm{3}}{\mathrm{4}}=\mathrm{0}.\mathrm{75},\:\lambda=\frac{\mathrm{2}{l}}{{L}}=\frac{\mathrm{6}}{\mathrm{4}}=\mathrm{1}.\mathrm{5} \\ $$$$\mathrm{sin}\:\alpha=\frac{\mathrm{6}\eta−\sqrt{\mathrm{2}\left(\mathrm{2}\eta^{\mathrm{2}} +\lambda^{\mathrm{2}} −\mathrm{1}\right)}}{\mathrm{4}}=\mathrm{0}.\mathrm{580137} \\ $$$$\Rightarrow\tau=\mathrm{2}.\mathrm{905932} \\ $$$$\Rightarrow{T}=\frac{{mg}}{\tau}=\mathrm{0}.\mathrm{344}{mg} \\ $$

Commented by ajfour last updated on 15/Feb/20

great way Sir, its really not so  complex, thank you, i think  my solution answers well too.

$${great}\:{way}\:{Sir},\:{its}\:{really}\:{not}\:{so} \\ $$$${complex},\:{thank}\:{you},\:{i}\:{think} \\ $$$${my}\:{solution}\:{answers}\:{well}\:{too}. \\ $$

Commented by mr W last updated on 15/Feb/20

that′s sure sir! your solution solves  the problem also very well. many  ways lead to the same goal!

$${that}'{s}\:{sure}\:{sir}!\:{your}\:{solution}\:{solves} \\ $$$${the}\:{problem}\:{also}\:{very}\:{well}.\:{many} \\ $$$${ways}\:{lead}\:{to}\:{the}\:{same}\:{goal}! \\ $$

Commented by mr W last updated on 16/Feb/20

for the case: l is given, find T=?  an exact solution is possible, see above.

$${for}\:{the}\:{case}:\:{l}\:{is}\:{given},\:{find}\:{T}=? \\ $$$${an}\:{exact}\:{solution}\:{is}\:{possible},\:{see}\:{above}. \\ $$

Answered by ajfour last updated on 15/Feb/20

Commented by ajfour last updated on 15/Feb/20

I am enlisting just the eqs.  that i have:      h−((L )/2)sin θ=pcos θ    ....(i)      h−Lsin θ=qcos θ      ...(ii)      pcos α=qcos β      psin α+qsin β=(L/2)      cos α+2cos β=5cos θ            α−β = 2θ  (one of them is is dependent)  cos α+((2pcos α)/q)=5cos θ  ⇒   cos α=((5cos θ)/((1+2p/q)))          cos β=((5(p/q)cos θ)/((1+2p/q)))      p(√(1−{((5cos θ)/((1+2p/q)))}^2 ))+      q(√(1−{((5(p/q)cos θ)/((1+2p/q)))}^2 )) =(L/2)  while we have p(θ) and q(θ),  from first two eqs.  ________________________

$${I}\:{am}\:{enlisting}\:{just}\:{the}\:{eqs}. \\ $$$${that}\:{i}\:{have}: \\ $$$$\:\:\:\:{h}−\frac{{L}\:}{\mathrm{2}}\mathrm{sin}\:\theta={p}\mathrm{cos}\:\theta\:\:\:\:....\left({i}\right) \\ $$$$\:\:\:\:{h}−{L}\mathrm{sin}\:\theta={q}\mathrm{cos}\:\theta\:\:\:\:\:\:...\left({ii}\right) \\ $$$$\:\:\:\:{p}\mathrm{cos}\:\alpha={q}\mathrm{cos}\:\beta \\ $$$$\:\:\:\:{p}\mathrm{sin}\:\alpha+{q}\mathrm{sin}\:\beta=\frac{{L}}{\mathrm{2}} \\ $$$$\:\:\:\:\mathrm{cos}\:\alpha+\mathrm{2cos}\:\beta=\mathrm{5cos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\alpha−\beta\:=\:\mathrm{2}\theta \\ $$$$\left({one}\:{of}\:{them}\:{is}\:{is}\:{dependent}\right) \\ $$$$\mathrm{cos}\:\alpha+\frac{\mathrm{2}{p}\mathrm{cos}\:\alpha}{{q}}=\mathrm{5cos}\:\theta \\ $$$$\Rightarrow\:\:\:\mathrm{cos}\:\alpha=\frac{\mathrm{5cos}\:\theta}{\left(\mathrm{1}+\mathrm{2}{p}/{q}\right)} \\ $$$$\:\:\:\:\:\:\:\:\mathrm{cos}\:\beta=\frac{\mathrm{5}\left({p}/{q}\right)\mathrm{cos}\:\theta}{\left(\mathrm{1}+\mathrm{2}{p}/{q}\right)} \\ $$$$ \\ $$$$\:\:{p}\sqrt{\mathrm{1}−\left\{\frac{\mathrm{5cos}\:\theta}{\left(\mathrm{1}+\mathrm{2}{p}/{q}\right)}\right\}^{\mathrm{2}} }+ \\ $$$$\:\:\:\:{q}\sqrt{\mathrm{1}−\left\{\frac{\mathrm{5}\left({p}/{q}\right)\mathrm{cos}\:\theta}{\left(\mathrm{1}+\mathrm{2}{p}/{q}\right)}\right\}^{\mathrm{2}} }\:=\frac{{L}}{\mathrm{2}} \\ $$$${while}\:{we}\:{have}\:{p}\left(\theta\right)\:{and}\:{q}\left(\theta\right), \\ $$$${from}\:{first}\:{two}\:{eqs}. \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com