Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 81853 by jagoll last updated on 16/Feb/20

lim_(x→∞)  {n ∫_0 ^1  (x^n /(x^3 +1)) dx } = ?

$$\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:\left\{{n}\:\underset{\mathrm{0}} {\overset{\mathrm{1}} {\int}}\:\frac{{x}^{{n}} }{{x}^{\mathrm{3}} +\mathrm{1}}\:{dx}\:\right\}\:=\:? \\ $$

Commented by john santu last updated on 16/Feb/20

(1/2) is the answer

$$\frac{\mathrm{1}}{\mathrm{2}}\:{is}\:{the}\:{answer} \\ $$

Commented by mathmax by abdo last updated on 16/Feb/20

let U_n =n ∫_0 ^1  (x^n /(1+x^3 ))dx  changement x^n  =t give x =t^(1/n)  ⇒  U_n =n ∫_0 ^1  (t/(1+t^(3/n) ))×(1/n)t^((1/n)−1)  dt =∫_0 ^1  (t^(1/n) /(1+t^(3/n) ))dt  =∫_0 ^1 f_n (t)dt  f_n  c.s to f(x)=(1/2)  and 0≤f_n ≤1⇒0≤∫_0 ^1 f_n (t ≤1 theorem of  convergence dominee give lim_(n→+∞)  U_n =∫_0 ^1 lim_(n→+∞) f_n (t)dt  =(1/2)

$${let}\:{U}_{{n}} ={n}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{x}^{{n}} }{\mathrm{1}+{x}^{\mathrm{3}} }{dx}\:\:{changement}\:{x}^{{n}} \:={t}\:{give}\:{x}\:={t}^{\frac{\mathrm{1}}{{n}}} \:\Rightarrow \\ $$$${U}_{{n}} ={n}\:\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}}{\mathrm{1}+{t}^{\frac{\mathrm{3}}{{n}}} }×\frac{\mathrm{1}}{{n}}{t}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} \:{dt}\:=\int_{\mathrm{0}} ^{\mathrm{1}} \:\frac{{t}^{\frac{\mathrm{1}}{{n}}} }{\mathrm{1}+{t}^{\frac{\mathrm{3}}{{n}}} }{dt}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({t}\right){dt} \\ $$$${f}_{{n}} \:{c}.{s}\:{to}\:{f}\left({x}\right)=\frac{\mathrm{1}}{\mathrm{2}}\:\:{and}\:\mathrm{0}\leqslant{f}_{{n}} \leqslant\mathrm{1}\Rightarrow\mathrm{0}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} {f}_{{n}} \left({t}\:\leqslant\mathrm{1}\:{theorem}\:{of}\right. \\ $$$${convergence}\:{dominee}\:{give}\:{lim}_{{n}\rightarrow+\infty} \:{U}_{{n}} =\int_{\mathrm{0}} ^{\mathrm{1}} {lim}_{{n}\rightarrow+\infty} {f}_{{n}} \left({t}\right){dt} \\ $$$$=\frac{\mathrm{1}}{\mathrm{2}} \\ $$

Answered by mind is power last updated on 16/Feb/20

u=x^n   ⇒dx=((u^((1/n)−1) du)/n)  =lim_(n→∞) {∫_0 ^1 ((u^(1/n) du)/(u^(3/n) +1))}  ∫_0 ^1 (u^(1/n) /(u^(3/n) +1))≤∫_0 ^1 (1/1)du=1 ⇒absolute cv  we can switch Lim and ∫  =∫_0 ^1 lim_(n→∞) (u^(1/n) /(u^(3/n) +1))du  lim   (u^(1/n) /(u^(3/n) +1))=1  μ p p u∈[0,1[   lesbegue integral and notation    n→∞  we get  =∫_0 ^1 (1/2)du=(1/2)

$${u}={x}^{{n}} \\ $$$$\Rightarrow{dx}=\frac{{u}^{\frac{\mathrm{1}}{{n}}−\mathrm{1}} {du}}{{n}} \\ $$$$=\underset{{n}\rightarrow\infty} {\mathrm{lim}}\left\{\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\frac{\mathrm{1}}{{n}}} {du}}{{u}^{\frac{\mathrm{3}}{{n}}} +\mathrm{1}}\right\} \\ $$$$\int_{\mathrm{0}} ^{\mathrm{1}} \frac{{u}^{\frac{\mathrm{1}}{{n}}} }{{u}^{\frac{\mathrm{3}}{{n}}} +\mathrm{1}}\leqslant\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{1}}{du}=\mathrm{1}\:\Rightarrow{absolute}\:{cv} \\ $$$${we}\:{can}\:{switch}\:{Lim}\:{and}\:\int \\ $$$$=\int_{\mathrm{0}} ^{\mathrm{1}} \underset{{n}\rightarrow\infty} {\mathrm{lim}}\frac{{u}^{\frac{\mathrm{1}}{{n}}} }{{u}^{\frac{\mathrm{3}}{{n}}} +\mathrm{1}}{du} \\ $$$$\mathrm{lim}\:\:\:\frac{{u}^{\frac{\mathrm{1}}{{n}}} }{{u}^{\frac{\mathrm{3}}{{n}}} +\mathrm{1}}=\mathrm{1}\:\:\mu\:{p}\:{p}\:{u}\in\left[\mathrm{0},\mathrm{1}\left[\:\:\:{lesbegue}\:{integral}\:{and}\:{notation}\right.\right. \\ $$$$ \\ $$$${n}\rightarrow\infty \\ $$$${we}\:{get}\:\:=\int_{\mathrm{0}} ^{\mathrm{1}} \frac{\mathrm{1}}{\mathrm{2}}{du}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com