Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 81854 by ajfour last updated on 16/Feb/20

Commented by ajfour last updated on 16/Feb/20

Find eq. of parabola using  a,b,c  in the form y=q−x^2 .

$${Find}\:{eq}.\:{of}\:{parabola}\:{using} \\ $$$${a},{b},{c}\:\:{in}\:{the}\:{form}\:{y}={q}−{x}^{\mathrm{2}} . \\ $$

Answered by mr W last updated on 16/Feb/20

Commented by mr W last updated on 16/Feb/20

an attempt...  ϕ=cos^(−1) ((a^2 +b^2 −c^2 )/(2ab))  x_B =a cos θ  y_B =a sin θ  ⇒a sin θ=q−a^2  cos^2  θ   ...(i)  x_A =b cos (θ+ϕ)=b(cos θcos ϕ−sin θsin ϕ)  y_A =b sin (θ+ϕ)=b(sin θcos ϕ+cos θsin ϕ)  ⇒b(sin θcos ϕ+cos θsin ϕ)=q−b^2 (cos θcos ϕ−sin θsin ϕ)^2     (ii)−(i):  b(sin θcos ϕ+cos θsin ϕ)−a sin θ  =a^2  cos^2  θ−b^2 (cos θcos ϕ−sin θsin ϕ)^2     we can solve this for θ and then   get q from (i):  q=a(sin θ+a^2  cos θ)

$${an}\:{attempt}... \\ $$$$\varphi=\mathrm{cos}^{−\mathrm{1}} \frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}} \\ $$$${x}_{{B}} ={a}\:\mathrm{cos}\:\theta \\ $$$${y}_{{B}} ={a}\:\mathrm{sin}\:\theta \\ $$$$\Rightarrow{a}\:\mathrm{sin}\:\theta={q}−{a}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta\:\:\:...\left({i}\right) \\ $$$${x}_{{A}} ={b}\:\mathrm{cos}\:\left(\theta+\varphi\right)={b}\left(\mathrm{cos}\:\theta\mathrm{cos}\:\varphi−\mathrm{sin}\:\theta\mathrm{sin}\:\varphi\right) \\ $$$${y}_{{A}} ={b}\:\mathrm{sin}\:\left(\theta+\varphi\right)={b}\left(\mathrm{sin}\:\theta\mathrm{cos}\:\varphi+\mathrm{cos}\:\theta\mathrm{sin}\:\varphi\right) \\ $$$$\Rightarrow{b}\left(\mathrm{sin}\:\theta\mathrm{cos}\:\varphi+\mathrm{cos}\:\theta\mathrm{sin}\:\varphi\right)={q}−{b}^{\mathrm{2}} \left(\mathrm{cos}\:\theta\mathrm{cos}\:\varphi−\mathrm{sin}\:\theta\mathrm{sin}\:\varphi\right)^{\mathrm{2}} \\ $$$$ \\ $$$$\left({ii}\right)−\left({i}\right): \\ $$$${b}\left(\mathrm{sin}\:\theta\mathrm{cos}\:\varphi+\mathrm{cos}\:\theta\mathrm{sin}\:\varphi\right)−{a}\:\mathrm{sin}\:\theta \\ $$$$={a}^{\mathrm{2}} \:\mathrm{cos}^{\mathrm{2}} \:\theta−{b}^{\mathrm{2}} \left(\mathrm{cos}\:\theta\mathrm{cos}\:\varphi−\mathrm{sin}\:\theta\mathrm{sin}\:\varphi\right)^{\mathrm{2}} \\ $$$$ \\ $$$${we}\:{can}\:{solve}\:{this}\:{for}\:\theta\:{and}\:{then} \\ $$$$\:{get}\:{q}\:{from}\:\left({i}\right): \\ $$$${q}={a}\left(\mathrm{sin}\:\theta+{a}^{\mathrm{2}} \:\mathrm{cos}\:\theta\right) \\ $$

Commented by ajfour last updated on 16/Feb/20

equivalently  let further A(bcos ψ,bsin ψ)  ⇒  a^2 sin^2 θ−asin θ+(q−a^2 )=0        b^2 sin^2 ψ−bsin ψ+(q−b^2 )=0    sin θ=(1/(2a))+(√((1/(4a^2 ))−(q/a^2 )+1))    sin ψ=(1/(2b))+(√((1/(4b^2 ))−(q/b^2 )+1))  ________________________  And   θ+ψ =          sin^(−1) {(1/(2a))+(√((1/(4a^2 ))−(q/a^2 )+1))}      +sin^(−1) {(1/(2b))+(√((1/(4b^2 ))−(q/b^2 )+1))}      =π−cos^(−1) (((a^2 +b^2 −c^2 )/(2ab)))  _________________________■

$${equivalently} \\ $$$${let}\:{further}\:{A}\left({b}\mathrm{cos}\:\psi,{b}\mathrm{sin}\:\psi\right) \\ $$$$\Rightarrow\:\:{a}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \theta−{a}\mathrm{sin}\:\theta+\left({q}−{a}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\:\:\:\:\:\:{b}^{\mathrm{2}} \mathrm{sin}\:^{\mathrm{2}} \psi−{b}\mathrm{sin}\:\psi+\left({q}−{b}^{\mathrm{2}} \right)=\mathrm{0} \\ $$$$\:\:\mathrm{sin}\:\theta=\frac{\mathrm{1}}{\mathrm{2}{a}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{2}} }−\frac{{q}}{{a}^{\mathrm{2}} }+\mathrm{1}} \\ $$$$\:\:\mathrm{sin}\:\psi=\frac{\mathrm{1}}{\mathrm{2}{b}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}{b}^{\mathrm{2}} }−\frac{{q}}{{b}^{\mathrm{2}} }+\mathrm{1}} \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_ \\ $$$${And}\:\:\:\theta+\psi\:=\: \\ $$$$\:\:\:\:\:\:\:\mathrm{sin}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{\mathrm{2}{a}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}{a}^{\mathrm{2}} }−\frac{{q}}{{a}^{\mathrm{2}} }+\mathrm{1}}\right\} \\ $$$$\:\:\:\:+\mathrm{sin}^{−\mathrm{1}} \left\{\frac{\mathrm{1}}{\mathrm{2}{b}}+\sqrt{\frac{\mathrm{1}}{\mathrm{4}{b}^{\mathrm{2}} }−\frac{{q}}{{b}^{\mathrm{2}} }+\mathrm{1}}\right\} \\ $$$$\:\:\:\:=\pi−\mathrm{cos}^{−\mathrm{1}} \left(\frac{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} −{c}^{\mathrm{2}} }{\mathrm{2}{ab}}\right) \\ $$$$\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\__{\blacksquare} \\ $$

Commented by mr W last updated on 16/Feb/20

very nice with a final eqn. for q!

$${very}\:{nice}\:{with}\:{a}\:{final}\:{eqn}.\:{for}\:{q}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com