Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 81871 by mr W last updated on 16/Feb/20

a_1 =4  a_(n+1) =((4a_n +3)/(a_n +2))  find a_n =?

a1=4an+1=4an+3an+2findan=?

Commented by jagoll last updated on 16/Feb/20

my answer is correct mister?

myansweriscorrectmister?

Commented by john santu last updated on 16/Feb/20

not correct!   a_(n+1)  = 4−(5/(a_n +2))  n=1 ⇒a_2  = 4 −(5/6)=((19)/6)  n=2 ⇒a_3  = 4−(5/((((19)/6))+2))=4−((30)/(31))  = ((124−30)/(31))= ((94)/(31)) ≠ ((43)/(72))(27)−((53)/(24))

notcorrect!an+1=45an+2n=1a2=456=196n=2a3=45(196)+2=43031=1243031=94314372(27)5324

Commented by jagoll last updated on 16/Feb/20

haha...wrong sir

haha...wrongsir

Answered by mr W last updated on 16/Feb/20

a_(n+1) +A=((4a_n +3)/(a_n +2))+A=(((4+A)a_n +(3+2A))/(a_n +2))  a_(n+1) +B=(((4+B)a_n +(3+2B))/(a_n +2))  ((a_(n+1) +A)/(a_(n+1) +B))=(((4+A)a_n +(3+2A))/((4+B)a_n +(3+2B)))  ((a_(n+1) +A)/(a_(n+1) +B))=((4+A)/(4+B))×((a_n +((3+2A)/(4+A)))/(a_n +((3+2B)/(4+B))))  A=((3+2A)/(4+A)) ⇒A^2 +2A−3=0  ⇒(A+3)(A−1)=0 ⇒A=−3 or 1  similarly  ⇒B=−3 or 1  we take A≠B, e.g. A=−3, B=1,  ((a_(n+1) −3)/(a_(n+1) +1))=(1/5)(((a_n −3)/(a_n +1)))  let b_n =((a_n −3)/(a_n +1))  ⇒b_(n+1) =(1/5)b_n   ← this is a G.P. !  ⇒b_n =b_1 ((1/5))^(n−1)   b_1 =((a_1 −3)/(a_1 +1))=((4−3)/(4+1))=(1/5)  ⇒b_n =((1/5))^n =((a_n −3)/(a_n +1))  ⇒a_n =((3+((1/5))^n )/(1−((1/5))^n ))=((3×5^n +1)/(5^n −1))

an+1+A=4an+3an+2+A=(4+A)an+(3+2A)an+2an+1+B=(4+B)an+(3+2B)an+2an+1+Aan+1+B=(4+A)an+(3+2A)(4+B)an+(3+2B)an+1+Aan+1+B=4+A4+B×an+3+2A4+Aan+3+2B4+BA=3+2A4+AA2+2A3=0(A+3)(A1)=0A=3or1similarlyB=3or1wetakeAB,e.g.A=3,B=1,an+13an+1+1=15(an3an+1)letbn=an3an+1bn+1=15bnthisisaG.P.!bn=b1(15)n1b1=a13a1+1=434+1=15bn=(15)n=an3an+1an=3+(15)n1(15)n=3×5n+15n1

Commented by jagoll last updated on 16/Feb/20

alright , i′ll try to use this method  for similar problems in my book,  mister

alright,illtrytousethismethodforsimilarproblemsinmybook,mister

Commented by jagoll last updated on 16/Feb/20

why is it different from the  previous problem? that you post  too. what is the general   form of solving this type of  problem?

whyisitdifferentfromthepreviousproblem?thatyouposttoo.whatisthegeneralformofsolvingthistypeofproblem?

Commented by mr W last updated on 16/Feb/20

for type a_(n+1) =2a_n −3a_(n−1)   you can  see that the term should be in form  a_n =Aq^n , since it fulfulls the eqn.  a_(n+1) =2a_n −3a_(n−1) . but you can not apply  it for other types like a_(n+1) =(n+1)a_n −2a_(n−1) .  that means there are no universal  methods! one should try different  methods from case to case. for  same types you can find no solution,  e.g. a_(n+1) =2a_n ^2 +1, a_(n+1) =(√(a_n +2))+1 etc.

fortypean+1=2an3an1youcanseethatthetermshouldbeinforman=Aqn,sinceitfulfullstheeqn.an+1=2an3an1.butyoucannotapplyitforothertypeslikean+1=(n+1)an2an1.thatmeanstherearenouniversalmethods!oneshouldtrydifferentmethodsfromcasetocase.forsametypesyoucanfindnosolution,e.g.an+1=2an2+1,an+1=an+2+1etc.

Terms of Service

Privacy Policy

Contact: info@tinkutara.com