Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 81911 by jagoll last updated on 16/Feb/20

Commented by jagoll last updated on 16/Feb/20

a_(n+1)  = ((3a_n +1)/2)   a_(n+1)  +A = A+((3a_n +1)/2)=((3a_n +2A+1)/2)  a_(n+1) +B = B +((3a_n +1)/2)= ((3a_n +2B+1)/2)  ((a_(n+1) +A)/(a_(n+1) +B)) = ((3a_n +2A+1)/(3a_n +2B+1))  ((a_(n+1) +A)/(a_(n+1) +B)) = (3/3)×((a_n +((2A+1)/3))/(a_n +((2B+1)/3)))  A= ((2A+1)/3) ⇒ A=1  B = 1 . i have trouble

$${a}_{{n}+\mathrm{1}} \:=\:\frac{\mathrm{3}{a}_{{n}} +\mathrm{1}}{\mathrm{2}}\: \\ $$$${a}_{{n}+\mathrm{1}} \:+{A}\:=\:{A}+\frac{\mathrm{3}{a}_{{n}} +\mathrm{1}}{\mathrm{2}}=\frac{\mathrm{3}{a}_{{n}} +\mathrm{2}{A}+\mathrm{1}}{\mathrm{2}} \\ $$$${a}_{{n}+\mathrm{1}} +{B}\:=\:{B}\:+\frac{\mathrm{3}{a}_{{n}} +\mathrm{1}}{\mathrm{2}}=\:\frac{\mathrm{3}{a}_{{n}} +\mathrm{2}{B}+\mathrm{1}}{\mathrm{2}} \\ $$$$\frac{{a}_{{n}+\mathrm{1}} +{A}}{{a}_{{n}+\mathrm{1}} +{B}}\:=\:\frac{\mathrm{3}{a}_{{n}} +\mathrm{2}{A}+\mathrm{1}}{\mathrm{3}{a}_{{n}} +\mathrm{2}{B}+\mathrm{1}} \\ $$$$\frac{{a}_{{n}+\mathrm{1}} +{A}}{{a}_{{n}+\mathrm{1}} +{B}}\:=\:\frac{\mathrm{3}}{\mathrm{3}}×\frac{{a}_{{n}} +\frac{\mathrm{2}{A}+\mathrm{1}}{\mathrm{3}}}{{a}_{{n}} +\frac{\mathrm{2}{B}+\mathrm{1}}{\mathrm{3}}} \\ $$$${A}=\:\frac{\mathrm{2}{A}+\mathrm{1}}{\mathrm{3}}\:\Rightarrow\:{A}=\mathrm{1} \\ $$$${B}\:=\:\mathrm{1}\:.\:{i}\:{have}\:{trouble} \\ $$

Commented by jagoll last updated on 16/Feb/20

hahaha..what wrong this my work?

$${hahaha}..{what}\:{wrong}\:{this}\:{my}\:{work}? \\ $$

Commented by mr W last updated on 16/Feb/20

the tactic with a_(n+1) +A and a_(n+1) +B  is due to the fact that we have a_n  in  a_(n+1) =((...a_n +....)/(...a_n +...))  you can not apply this tactic for other  cases.

$${the}\:{tactic}\:{with}\:{a}_{{n}+\mathrm{1}} +{A}\:{and}\:{a}_{{n}+\mathrm{1}} +{B} \\ $$$${is}\:{due}\:{to}\:{the}\:{fact}\:{that}\:{we}\:{have}\:{a}_{{n}} \:{in} \\ $$$${a}_{{n}+\mathrm{1}} =\frac{...{a}_{{n}} +....}{...{a}_{{n}} +...} \\ $$$${you}\:{can}\:{not}\:{apply}\:{this}\:{tactic}\:{for}\:{other} \\ $$$${cases}. \\ $$

Commented by jagoll last updated on 17/Feb/20

okay sir thank you

$${okay}\:{sir}\:{thank}\:{you} \\ $$

Answered by mr W last updated on 16/Feb/20

a_(n+1) =(3/2)a_n +(1/2)  a_(n+1) +A=(3/2)a_n +(1/2)+A  a_(n+1) +A=(3/2)(a_n +(1/3)+((2A)/3))  ⇒A=^(!) (1/3)+((2A)/3)  ⇒A=1  ⇒a_(n+1) +1=(3/2)(a_n +1)  let b_n =a_n +1  ⇒b_(n+1) =(3/2)b_n  ← it′s a GP  b_1 =a_1 +1=2+1=3  ⇒b_n =b_1 ((3/2))^(n−1) =3((3/2))^(n−1) =(3^n /2^(n−1) )=a_n +1  ⇒a_n =(3^n /2^(n−1) )−1

$${a}_{{n}+\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}{a}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}} \\ $$$${a}_{{n}+\mathrm{1}} +{A}=\frac{\mathrm{3}}{\mathrm{2}}{a}_{{n}} +\frac{\mathrm{1}}{\mathrm{2}}+{A} \\ $$$${a}_{{n}+\mathrm{1}} +{A}=\frac{\mathrm{3}}{\mathrm{2}}\left({a}_{{n}} +\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}{A}}{\mathrm{3}}\right) \\ $$$$\Rightarrow{A}\overset{!} {=}\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{2}{A}}{\mathrm{3}} \\ $$$$\Rightarrow{A}=\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}+\mathrm{1}} +\mathrm{1}=\frac{\mathrm{3}}{\mathrm{2}}\left({a}_{{n}} +\mathrm{1}\right) \\ $$$${let}\:{b}_{{n}} ={a}_{{n}} +\mathrm{1} \\ $$$$\Rightarrow{b}_{{n}+\mathrm{1}} =\frac{\mathrm{3}}{\mathrm{2}}{b}_{{n}} \:\leftarrow\:{it}'{s}\:{a}\:{GP} \\ $$$${b}_{\mathrm{1}} ={a}_{\mathrm{1}} +\mathrm{1}=\mathrm{2}+\mathrm{1}=\mathrm{3} \\ $$$$\Rightarrow{b}_{{n}} ={b}_{\mathrm{1}} \left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} =\mathrm{3}\left(\frac{\mathrm{3}}{\mathrm{2}}\right)^{{n}−\mathrm{1}} =\frac{\mathrm{3}^{{n}} }{\mathrm{2}^{{n}−\mathrm{1}} }={a}_{{n}} +\mathrm{1} \\ $$$$\Rightarrow{a}_{{n}} =\frac{\mathrm{3}^{{n}} }{\mathrm{2}^{{n}−\mathrm{1}} }−\mathrm{1} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com