Question and Answers Forum

All Questions      Topic List

Differential Equation Questions

Previous in All Question      Next in All Question      

Previous in Differential Equation      Next in Differential Equation      

Question Number 81937 by Joel578 last updated on 16/Feb/20

Solve the PDE by method of separating variables  (∂^2 u/∂x^2 ) + 2t(∂^2 u/(∂x∂t)) − 4u = 0

$$\mathrm{Solve}\:\mathrm{the}\:\mathrm{PDE}\:\mathrm{by}\:\mathrm{method}\:\mathrm{of}\:\mathrm{separating}\:\mathrm{variables} \\ $$$$\frac{\partial^{\mathrm{2}} {u}}{\partial{x}^{\mathrm{2}} }\:+\:\mathrm{2}{t}\frac{\partial^{\mathrm{2}} {u}}{\partial{x}\partial{t}}\:−\:\mathrm{4}{u}\:=\:\mathrm{0} \\ $$

Commented by Joel578 last updated on 16/Feb/20

My approach  Let the solution be  u(x,t) = F(x)G(t)  Substitute u(x,t) to original eq. and divide   by F(x)G(t) yields  (1/F) (d^2 F/dx^2 ) + 2 ((1/F) (dF/dx))((t/T) (dT/dt)) − 4 = 0     Let P(x) = (1/F) (d^2 F/dx^2 ),   M(x) = (2/F) (dF/dx) ,   N(t) = (t/T) (dT/dt)  ⇒ P(x) + M(x)N(t) − 4 = 0  Differentiate both sides with respect to x, then t  ⇒ M ′(x) N ′(t) = 0  which means either M(x) or N(t) is a constant    • Case 1 : N(t) = n  P(x) + n M(x) − 4 = 0  ⇒ (d^2 F/dx^2 ) + 2n (dF/dx) − 4F = 0  ⇒ F(x) = C_1 e^((−n + 2(√(4 + n^2 )))x)  + C_2  e^((−n − 2(√(4 + n^2 )))x)   ⇒ N(t) = (t/T) (dT/dt) = n ⇒ T(t) = C_3  t^n     • Case 2 : M(x) = m  P(x) + m N(t) − 4 = 0

$$\mathrm{My}\:\mathrm{approach} \\ $$$$\mathrm{Let}\:\mathrm{the}\:\mathrm{solution}\:\mathrm{be}\:\:{u}\left({x},{t}\right)\:=\:{F}\left({x}\right){G}\left({t}\right) \\ $$$$\mathrm{Substitute}\:{u}\left({x},{t}\right)\:\mathrm{to}\:\mathrm{original}\:\mathrm{eq}.\:\mathrm{and}\:\mathrm{divide}\: \\ $$$$\mathrm{by}\:{F}\left({x}\right){G}\left({t}\right)\:\mathrm{yields} \\ $$$$\frac{\mathrm{1}}{{F}}\:\frac{{d}^{\mathrm{2}} {F}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}\:\left(\frac{\mathrm{1}}{{F}}\:\frac{{dF}}{{dx}}\right)\left(\frac{{t}}{{T}}\:\frac{{dT}}{{dt}}\right)\:−\:\mathrm{4}\:=\:\mathrm{0}\: \\ $$$$ \\ $$$$\mathrm{Let}\:{P}\left({x}\right)\:=\:\frac{\mathrm{1}}{{F}}\:\frac{{d}^{\mathrm{2}} {F}}{{dx}^{\mathrm{2}} },\:\:\:{M}\left({x}\right)\:=\:\frac{\mathrm{2}}{{F}}\:\frac{{dF}}{{dx}}\:,\:\:\:{N}\left({t}\right)\:=\:\frac{{t}}{{T}}\:\frac{{dT}}{{dt}} \\ $$$$\Rightarrow\:{P}\left({x}\right)\:+\:{M}\left({x}\right){N}\left({t}\right)\:−\:\mathrm{4}\:=\:\mathrm{0} \\ $$$$\mathrm{Differentiate}\:\mathrm{both}\:\mathrm{sides}\:\mathrm{with}\:\mathrm{respect}\:\mathrm{to}\:{x},\:\mathrm{then}\:{t} \\ $$$$\Rightarrow\:{M}\:'\left({x}\right)\:{N}\:'\left({t}\right)\:=\:\mathrm{0} \\ $$$$\mathrm{which}\:\mathrm{means}\:\mathrm{either}\:{M}\left({x}\right)\:\mathrm{or}\:{N}\left({t}\right)\:\mathrm{is}\:\mathrm{a}\:\mathrm{constant} \\ $$$$ \\ $$$$\bullet\:\mathrm{Case}\:\mathrm{1}\::\:{N}\left({t}\right)\:=\:{n} \\ $$$${P}\left({x}\right)\:+\:{n}\:{M}\left({x}\right)\:−\:\mathrm{4}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:\frac{{d}^{\mathrm{2}} {F}}{{dx}^{\mathrm{2}} }\:+\:\mathrm{2}{n}\:\frac{{dF}}{{dx}}\:−\:\mathrm{4}{F}\:=\:\mathrm{0} \\ $$$$\Rightarrow\:{F}\left({x}\right)\:=\:{C}_{\mathrm{1}} {e}^{\left(−{n}\:+\:\mathrm{2}\sqrt{\mathrm{4}\:+\:{n}^{\mathrm{2}} }\right){x}} \:+\:{C}_{\mathrm{2}} \:{e}^{\left(−{n}\:−\:\mathrm{2}\sqrt{\mathrm{4}\:+\:{n}^{\mathrm{2}} }\right){x}} \\ $$$$\Rightarrow\:{N}\left({t}\right)\:=\:\frac{{t}}{{T}}\:\frac{{dT}}{{dt}}\:=\:{n}\:\Rightarrow\:{T}\left({t}\right)\:=\:{C}_{\mathrm{3}} \:{t}^{{n}} \\ $$$$ \\ $$$$\bullet\:\mathrm{Case}\:\mathrm{2}\::\:{M}\left({x}\right)\:=\:{m} \\ $$$${P}\left({x}\right)\:+\:{m}\:{N}\left({t}\right)\:−\:\mathrm{4}\:=\:\mathrm{0} \\ $$

Commented by Joel578 last updated on 16/Feb/20

Please guide me with the second case.

$${Please}\:{guide}\:{me}\:{with}\:{the}\:{second}\:{case}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com