Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 81954 by Cmr 237 last updated on 16/Feb/20

 soit α∈]0;π[. determiner:  1)le module et l′argument de:  a)1−e^(iα) ,b)1+e^(i𝛂)   2)deduire le module et l′argument de   a) ((1−e^(iα) )/(1+e^(iα) )), b)(1−e^(iα) )(1+e^(iα) )   rochinel930@gmail.c

soitα]0;π[.determiner:1)lemoduleetlargumentde:a)1eiα,b)1+eiα2)deduirelemoduleetlargumentdea)1eiα1+eiα,b)(1eiα)(1+eiα)rochinel930@gmail.c

Commented by abdomathmax last updated on 16/Feb/20

z=1−e^(iα)  =1−cosα−isinα =2sin^2 ((α/2))−2isin((α/2))cos((α/2))  =2sin((α/2))(sin((α/2))−icos((α/2)))  0<(α/2)<(π/2) ⇒sin((α/2))>0 ⇒z=2sin((α/2)){cos((π/2)−(α/2))−isin((π/2)−(α/2))}  =2sin((α/2)){cos(((α−π)/2))+isin(((α−π)/2))} ⇒  ∣z∣=2sin((α/2)) and arg(z)=((α−π)/2) [2π]

z=1eiα=1cosαisinα=2sin2(α2)2isin(α2)cos(α2)=2sin(α2)(sin(α2)icos(α2))0<α2<π2sin(α2)>0z=2sin(α2){cos(π2α2)isin(π2α2)}=2sin(α2){cos(απ2)+isin(απ2)}z∣=2sin(α2)andarg(z)=απ2[2π]

Commented by abdomathmax last updated on 16/Feb/20

Z=1+e^(iα)  ⇒Z=1+cosα +isinα  =2cos^2 ((α/2))+2isin((α/2))cos((α/2))  =2cos((α/2)){cos((α/2))+isin((α/2))}  cos((α/2))>0 due to 0<α<π ⇒∣Z∣=2cos((α/2))and  argZ=(α/2)[2π]

Z=1+eiαZ=1+cosα+isinα=2cos2(α2)+2isin(α2)cos(α2)=2cos(α2){cos(α2)+isin(α2)}cos(α2)>0dueto0<α<π⇒∣Z∣=2cos(α2)andargZ=α2[2π]

Commented by abdomathmax last updated on 16/Feb/20

∣((1−e^(iα) )/(1+e^(iα) ))∣ =((∣1−e^(iα) ∣)/(∣1+e^(iα) ∣)) =((2sin((α/2)))/(2cos((α/2))))=tan((α/2)) and  arg(((1−e^(iα) )/(1+e^(iα) )))=arg(1−e^(iα) )−arg(1+e^(iα) ) [2π]  =((α−π)/2)−(α/2)[2π] =−(π/2)[2π]

1eiα1+eiα=1eiα1+eiα=2sin(α2)2cos(α2)=tan(α2)andarg(1eiα1+eiα)=arg(1eiα)arg(1+eiα)[2π]=απ2α2[2π]=π2[2π]

Commented by abdomathmax last updated on 16/Feb/20

∣(1−e^(iα) )(1+e^(iα) )∣=2sin((α/2))×2cos((α/2))  =2sin(α) and arg{(1−e^(iα) )(1+e^(iα) )}  =arg(1−e^(iα) ) +arg(1+e^(iα) )[2π]  =((α−π)/2) +(α/2) [2π] =α−(π/2)

(1eiα)(1+eiα)∣=2sin(α2)×2cos(α2)=2sin(α)andarg{(1eiα)(1+eiα)}=arg(1eiα)+arg(1+eiα)[2π]=απ2+α2[2π]=απ2

Commented by Cmr 237 last updated on 16/Feb/20

1) 1+e^(iα) =e^((iα)/2) (e^(−((iα)/2)) +e^((iα)/2) )            =2cos((α/2))e^((iα)/2)    ∣1+e^(iα) ∣=∣2cos((α/2))e^((iα)/2) ∣                =2cos((α/2))  ∣1−e^(iα) ∣=∣−2isin((α/2))e^((iα)/2) ∣      =2sin((α/2))  arg(1−e^(iα) )=arg(−2isin((α/2))e^((iα)/2) )  =arg(−2sin((α/2)))+arg(i)+arg(e^((iα)/2) )  =π+(π/2)+(α/2)+2kπ  =((3π+α)/2)+2kπ

1)1+eiα=eiα2(eiα2+eiα2)=2cos(α2)eiα21+eiα∣=∣2cos(α2)eiα2=2cos(α2)1eiα∣=∣2isin(α2)eiα2=2sin(α2)arg(1eiα)=arg(2isin(α2)eiα2)=arg(2sin(α2))+arg(i)+arg(eiα2)=π+π2+α2+2kπ=3π+α2+2kπ

Commented by mathmax by abdo last updated on 16/Feb/20

((3π+α)/2) +2kπ =2π−(π/2)+(α/2) +2kπ =((α−π)/2)[2π]

3π+α2+2kπ=2ππ2+α2+2kπ=απ2[2π]

Terms of Service

Privacy Policy

Contact: info@tinkutara.com