Question and Answers Forum

All Questions      Topic List

None Questions

Previous in All Question      Next in All Question      

Previous in None      Next in None      

Question Number 81966 by naka3546 last updated on 17/Feb/20

(((1 + i(√3))/2) )^(2020)  +  (((1 − i(√3))/2) )^(2020)   =   A  A^4   =  ?

(1+i32)2020+(1i32)2020=AA4=?

Answered by TANMAY PANACEA last updated on 17/Feb/20

(1/2)=cos(π/3)    ((√3)/2)=sin(π/3)  (cos(π/3)+isin(π/3))^(2020) +(cos(π/3)−isin(π/3))^(2020)   (e^(i×(π/3)) )^(2020) +(e^(−i×(π/3)) )^(2020)   e^(iθ) +e^(−iθ) =2cosθ   where[θ=((2020π)/3)]  A=2cosθ  A^4 =16(cosθ)^4   now cos(((2020π)/3))  cos(2020×60)  =cos(121200)  =cos(336×360+240)  =−cos60  =((−1)/2)  so required answer is16× (((−1)/2))^4 =1

12=cosπ332=sinπ3(cosπ3+isinπ3)2020+(cosπ3isinπ3)2020(ei×π3)2020+(ei×π3)2020eiθ+eiθ=2cosθwhere[θ=2020π3]A=2cosθA4=16(cosθ)4nowcos(2020π3)cos(2020×60)=cos(121200)=cos(336×360+240)=cos60=12sorequiredansweris16×(12)4=1

Commented by naka3546 last updated on 17/Feb/20

θ = ((4π)/3)  ⇒  A = 2 cos θ = −1

θ=4π3A=2cosθ=1

Terms of Service

Privacy Policy

Contact: info@tinkutara.com