Question and Answers Forum

All Questions      Topic List

Geometry Questions

Previous in All Question      Next in All Question      

Previous in Geometry      Next in Geometry      

Question Number 81972 by ajfour last updated on 17/Feb/20

Commented by ajfour last updated on 17/Feb/20

△PQR is equilateral, find  s_(min,)  s_(max) .

$$\bigtriangleup{PQR}\:{is}\:{equilateral},\:{find} \\ $$$${s}_{{min},} \:{s}_{{max}} . \\ $$

Answered by mr W last updated on 17/Feb/20

Commented by mr W last updated on 17/Feb/20

Δ_(OAB) =(√(((11)/2)(((11)/2)−2)(((11)/2)−4)(((11)/2)−5)))=((√(231))/4)  Δ_(OAB) =((5δ)/2)=((√(231))/4)  ⇒δ=((√(231))/(10))  σ=(√(2^2 −δ^2 ))=(√(4−((231)/(100))))=((13)/(10))  O(((13)/(10)),−((√(231))/(10)))=(σ,−δ)  eqn. of circle:  (x−σ)^2 +(y+δ)^2 =4^2     say P(p,0), Q(0,q)  q=(√(s^2 −p^2 ))    x^2 +(y−q)^2 =s^2    ...(i)  (x−p)^2 +y^2 =s^2    ...(ii)  (x−σ)^2 +(y+δ)^2 =16   ...(iii)    (i)−(ii):  2px−p^2 −2qy+q^2 =0  ⇒x=(q/p)y+((p^2 −q^2 )/(2p))    ((q/p)y+((p^2 −q^2 )/(2p))−p)^2 +y^2 =s^2   (2qy−p^2 −q^2 )^2 +4p^2 y^2 =4p^2 s^2   y^2 −qy+((p^2 +q^2 )/4)−((p^2 s^2 )/(p^2 +q^2 ))=0  y^2 −qy−((3p^2 −q^2 )/4)=0  ⇒y=(((√3)p+q)/2)=(((√3)p+(√(s^2 −p^2 )))/2)  ⇒x=((p+(√3)q)/2)=((p+(√(3(s^2 −p^2 ))))/2)  (((p+(√(3(s^2 −p^2 ))))/2)−σ)^2 +((((√3)p+(√(s^2 −p^2 )))/2)+δ)^2 =16  ⇒(p+(√(3(s^2 −p^2 )))−2σ)^2 +((√3)p+(√(s^2 −p^2 ))+2δ)^2 =64  for minimum and maximum s: (ds/dp)=0  s_(min) ≈2.3935 at p≈1.9567

$$\Delta_{{OAB}} =\sqrt{\frac{\mathrm{11}}{\mathrm{2}}\left(\frac{\mathrm{11}}{\mathrm{2}}−\mathrm{2}\right)\left(\frac{\mathrm{11}}{\mathrm{2}}−\mathrm{4}\right)\left(\frac{\mathrm{11}}{\mathrm{2}}−\mathrm{5}\right)}=\frac{\sqrt{\mathrm{231}}}{\mathrm{4}} \\ $$$$\Delta_{{OAB}} =\frac{\mathrm{5}\delta}{\mathrm{2}}=\frac{\sqrt{\mathrm{231}}}{\mathrm{4}} \\ $$$$\Rightarrow\delta=\frac{\sqrt{\mathrm{231}}}{\mathrm{10}} \\ $$$$\sigma=\sqrt{\mathrm{2}^{\mathrm{2}} −\delta^{\mathrm{2}} }=\sqrt{\mathrm{4}−\frac{\mathrm{231}}{\mathrm{100}}}=\frac{\mathrm{13}}{\mathrm{10}} \\ $$$${O}\left(\frac{\mathrm{13}}{\mathrm{10}},−\frac{\sqrt{\mathrm{231}}}{\mathrm{10}}\right)=\left(\sigma,−\delta\right) \\ $$$${eqn}.\:{of}\:{circle}: \\ $$$$\left({x}−\sigma\right)^{\mathrm{2}} +\left({y}+\delta\right)^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} \\ $$$$ \\ $$$${say}\:{P}\left({p},\mathrm{0}\right),\:{Q}\left(\mathrm{0},{q}\right) \\ $$$${q}=\sqrt{{s}^{\mathrm{2}} −{p}^{\mathrm{2}} } \\ $$$$ \\ $$$${x}^{\mathrm{2}} +\left({y}−{q}\right)^{\mathrm{2}} ={s}^{\mathrm{2}} \:\:\:...\left({i}\right) \\ $$$$\left({x}−{p}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={s}^{\mathrm{2}} \:\:\:...\left({ii}\right) \\ $$$$\left({x}−\sigma\right)^{\mathrm{2}} +\left({y}+\delta\right)^{\mathrm{2}} =\mathrm{16}\:\:\:...\left({iii}\right) \\ $$$$ \\ $$$$\left({i}\right)−\left({ii}\right): \\ $$$$\mathrm{2}{px}−{p}^{\mathrm{2}} −\mathrm{2}{qy}+{q}^{\mathrm{2}} =\mathrm{0} \\ $$$$\Rightarrow{x}=\frac{{q}}{{p}}{y}+\frac{{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{2}{p}} \\ $$$$ \\ $$$$\left(\frac{{q}}{{p}}{y}+\frac{{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{2}{p}}−{p}\right)^{\mathrm{2}} +{y}^{\mathrm{2}} ={s}^{\mathrm{2}} \\ $$$$\left(\mathrm{2}{qy}−{p}^{\mathrm{2}} −{q}^{\mathrm{2}} \right)^{\mathrm{2}} +\mathrm{4}{p}^{\mathrm{2}} {y}^{\mathrm{2}} =\mathrm{4}{p}^{\mathrm{2}} {s}^{\mathrm{2}} \\ $$$${y}^{\mathrm{2}} −{qy}+\frac{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }{\mathrm{4}}−\frac{{p}^{\mathrm{2}} {s}^{\mathrm{2}} }{{p}^{\mathrm{2}} +{q}^{\mathrm{2}} }=\mathrm{0} \\ $$$${y}^{\mathrm{2}} −{qy}−\frac{\mathrm{3}{p}^{\mathrm{2}} −{q}^{\mathrm{2}} }{\mathrm{4}}=\mathrm{0} \\ $$$$\Rightarrow{y}=\frac{\sqrt{\mathrm{3}}{p}+{q}}{\mathrm{2}}=\frac{\sqrt{\mathrm{3}}{p}+\sqrt{{s}^{\mathrm{2}} −{p}^{\mathrm{2}} }}{\mathrm{2}} \\ $$$$\Rightarrow{x}=\frac{{p}+\sqrt{\mathrm{3}}{q}}{\mathrm{2}}=\frac{{p}+\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)}}{\mathrm{2}} \\ $$$$\left(\frac{{p}+\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)}}{\mathrm{2}}−\sigma\right)^{\mathrm{2}} +\left(\frac{\sqrt{\mathrm{3}}{p}+\sqrt{{s}^{\mathrm{2}} −{p}^{\mathrm{2}} }}{\mathrm{2}}+\delta\right)^{\mathrm{2}} =\mathrm{16} \\ $$$$\Rightarrow\left({p}+\sqrt{\mathrm{3}\left({s}^{\mathrm{2}} −{p}^{\mathrm{2}} \right)}−\mathrm{2}\sigma\right)^{\mathrm{2}} +\left(\sqrt{\mathrm{3}}{p}+\sqrt{{s}^{\mathrm{2}} −{p}^{\mathrm{2}} }+\mathrm{2}\delta\right)^{\mathrm{2}} =\mathrm{64} \\ $$$${for}\:{minimum}\:{and}\:{maximum}\:{s}:\:\frac{{ds}}{{dp}}=\mathrm{0} \\ $$$${s}_{{min}} \approx\mathrm{2}.\mathrm{3935}\:{at}\:{p}\approx\mathrm{1}.\mathrm{9567} \\ $$

Commented by mr W last updated on 17/Feb/20

Commented by ajfour last updated on 17/Feb/20

superb! Sir; requires enough  determination..

$${superb}!\:{Sir};\:{requires}\:{enough} \\ $$$${determination}.. \\ $$

Commented by mr W last updated on 17/Feb/20

Commented by mr W last updated on 17/Feb/20

s_(max)  is possible when  (q+((√(231))/(10)))^2 +(((13)/(10)))^2 =4^2   ⇒q=((3(√(159))−(√(231)))/(10))≈2.2630  ⇒p≈1.3022  ⇒s_(max) ≈2.6109  or  q=0  ⇒p≈2.8613  ⇒s_(max) ≈2.8613

$${s}_{{max}} \:{is}\:{possible}\:{when} \\ $$$$\left({q}+\frac{\sqrt{\mathrm{231}}}{\mathrm{10}}\right)^{\mathrm{2}} +\left(\frac{\mathrm{13}}{\mathrm{10}}\right)^{\mathrm{2}} =\mathrm{4}^{\mathrm{2}} \\ $$$$\Rightarrow{q}=\frac{\mathrm{3}\sqrt{\mathrm{159}}−\sqrt{\mathrm{231}}}{\mathrm{10}}\approx\mathrm{2}.\mathrm{2630} \\ $$$$\Rightarrow{p}\approx\mathrm{1}.\mathrm{3022} \\ $$$$\Rightarrow{s}_{{max}} \approx\mathrm{2}.\mathrm{6109} \\ $$$${or} \\ $$$${q}=\mathrm{0} \\ $$$$\Rightarrow{p}\approx\mathrm{2}.\mathrm{8613} \\ $$$$\Rightarrow{s}_{{max}} \approx\mathrm{2}.\mathrm{8613} \\ $$

Commented by mr W last updated on 17/Feb/20

Commented by mr W last updated on 17/Feb/20

Commented by ajfour last updated on 17/Feb/20

Too Good Sir, thanks plentiful.  you have dealt all cases.

$${Too}\:{Good}\:{Sir},\:{thanks}\:{plentiful}. \\ $$$${you}\:{have}\:{dealt}\:{all}\:{cases}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com