Question and Answers Forum

All Questions      Topic List

Coordinate Geometry Questions

Previous in All Question      Next in All Question      

Previous in Coordinate Geometry      Next in Coordinate Geometry      

Question Number 81975 by TANMAY PANACEA last updated on 17/Feb/20

Commented by TANMAY PANACEA last updated on 17/Feb/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Commented by mr W last updated on 17/Feb/20

please check your method sir!  point (0,9) is wrong, should be (0, 7.5).  point (6,6) is wrong, should be (5, 5).  mininum 6+6(√2) is wrong, should be 6(√5).

$${please}\:{check}\:{your}\:{method}\:{sir}! \\ $$$${point}\:\left(\mathrm{0},\mathrm{9}\right)\:{is}\:{wrong},\:{should}\:{be}\:\left(\mathrm{0},\:\mathrm{7}.\mathrm{5}\right). \\ $$$${point}\:\left(\mathrm{6},\mathrm{6}\right)\:{is}\:{wrong},\:{should}\:{be}\:\left(\mathrm{5},\:\mathrm{5}\right). \\ $$$${mininum}\:\mathrm{6}+\mathrm{6}\sqrt{\mathrm{2}}\:{is}\:{wrong},\:{should}\:{be}\:\mathrm{6}\sqrt{\mathrm{5}}. \\ $$

Commented by jagoll last updated on 17/Feb/20

Commented by mr W last updated on 17/Feb/20

to santu sir:  i think the error is that you assumed  that the distance from (3,9) to the  line y=x must be minimum. but this  is not proved, and also not true.

$${to}\:{santu}\:{sir}: \\ $$$${i}\:{think}\:{the}\:{error}\:{is}\:{that}\:{you}\:{assumed} \\ $$$${that}\:{the}\:{distance}\:{from}\:\left(\mathrm{3},\mathrm{9}\right)\:{to}\:{the} \\ $$$${line}\:{y}={x}\:{must}\:{be}\:{minimum}.\:{but}\:{this} \\ $$$${is}\:{not}\:{proved},\:{and}\:{also}\:{not}\:{true}. \\ $$

Commented by john santu last updated on 17/Feb/20

haha, sorry there was work. yes  sir , my method is invalid

$${haha},\:{sorry}\:{there}\:{was}\:{work}.\:{yes} \\ $$$${sir}\:,\:{my}\:{method}\:{is}\:{invalid} \\ $$

Answered by mr W last updated on 17/Feb/20

Commented by mr W last updated on 17/Feb/20

P ′=mirror image of P about y−axis  A ′=mirror image of A about y=x  P ′′=mirror image of P ′ about y=x  perimeter of ΔPAB=PB+BA+AP  =PB+BA+AP ′=PB+BA′+A′P ′′  minimum of PB+BA′+A′P ′′=PP ′′  =green line  =(√((9−3)^2 +(9+3)^2 ))=6(√5)≈13.41

$${P}\:'={mirror}\:{image}\:{of}\:{P}\:{about}\:{y}−{axis} \\ $$$${A}\:'={mirror}\:{image}\:{of}\:{A}\:{about}\:{y}={x} \\ $$$${P}\:''={mirror}\:{image}\:{of}\:{P}\:'\:{about}\:{y}={x} \\ $$$${perimeter}\:{of}\:\Delta{PAB}={PB}+{BA}+{AP} \\ $$$$={PB}+{BA}+{AP}\:'={PB}+{BA}'+{A}'{P}\:'' \\ $$$${minimum}\:{of}\:{PB}+{BA}'+{A}'{P}\:''={PP}\:'' \\ $$$$={green}\:{line} \\ $$$$=\sqrt{\left(\mathrm{9}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{9}+\mathrm{3}\right)^{\mathrm{2}} }=\mathrm{6}\sqrt{\mathrm{5}}\approx\mathrm{13}.\mathrm{41} \\ $$

Commented by TANMAY PANACEA last updated on 17/Feb/20

excellent sir...

$${excellent}\:{sir}... \\ $$

Commented by mr W last updated on 17/Feb/20

eqn. of PP ′′:  ((y+3)/(9+3))=((x−9)/(3−9))  ⇒y=−2x+15  intersection with line y=x  y_B =−2x_B +15=x_B   ⇒x_B =5, y_B =5 ⇒point B(5,5)  intersection with x−axis:  y_(A′) =−2x_(A′) +15=0  ⇒x_(A′) =7.5 ⇒point A′ (7.5,0)  ⇒point A(0,7.5)

$${eqn}.\:{of}\:{PP}\:'': \\ $$$$\frac{{y}+\mathrm{3}}{\mathrm{9}+\mathrm{3}}=\frac{{x}−\mathrm{9}}{\mathrm{3}−\mathrm{9}} \\ $$$$\Rightarrow{y}=−\mathrm{2}{x}+\mathrm{15} \\ $$$${intersection}\:{with}\:{line}\:{y}={x} \\ $$$${y}_{{B}} =−\mathrm{2}{x}_{{B}} +\mathrm{15}={x}_{{B}} \\ $$$$\Rightarrow{x}_{{B}} =\mathrm{5},\:{y}_{{B}} =\mathrm{5}\:\Rightarrow{point}\:{B}\left(\mathrm{5},\mathrm{5}\right) \\ $$$${intersection}\:{with}\:{x}−{axis}: \\ $$$${y}_{{A}'} =−\mathrm{2}{x}_{{A}'} +\mathrm{15}=\mathrm{0} \\ $$$$\Rightarrow{x}_{{A}'} =\mathrm{7}.\mathrm{5}\:\Rightarrow{point}\:{A}'\:\left(\mathrm{7}.\mathrm{5},\mathrm{0}\right) \\ $$$$\Rightarrow{point}\:{A}\left(\mathrm{0},\mathrm{7}.\mathrm{5}\right) \\ $$

Commented by mr W last updated on 17/Feb/20

i prefer such visiual solution...

$${i}\:{prefer}\:{such}\:{visiual}\:{solution}... \\ $$

Commented by john santu last updated on 17/Feb/20

point A (0, 7.5) wrong sir.   the point is not on the line y = x  . not accordance with problem

$${point}\:{A}\:\left(\mathrm{0},\:\mathrm{7}.\mathrm{5}\right)\:{wrong}\:{sir}.\: \\ $$$${the}\:{point}\:{is}\:{not}\:{on}\:{the}\:{line}\:{y}\:=\:{x} \\ $$$$.\:{not}\:{accordance}\:{with}\:{problem} \\ $$

Commented by mr W last updated on 17/Feb/20

calculus method:  say A(0,a), B(b,b)  perimeter =p  p=(√(3^2 +(9−a)^2 ))+(√((3−b)^2 +(9−b)^2 ))+(√(b^2 +(b−a)^2 ))  p=(√(90−18a+a^2 ))+(√(90−24b+2b^2 ))+(√(2b^2 −2ab+a^2 ))  (∂p/∂a)=((−9+a)/(√(90−18a+a^2 )))+((−b+a)/(√(2b^2 −2ab+a^2 )))=0  ⇒((9−a)/(√(90−18a+a^2 )))=((a−b)/(√(2b^2 −2ab+a^2 )))   ...(i)  (∂p/∂b)=((−12+2b)/(√(90−24b+2b^2 )))+((2b−a)/(√(2b^2 −2ab+a^2 )))=0  ((12−2b)/(√(90−24b+2b^2 )))=((2b−a)/(√(2b^2 −2ab+a^2 )))   ...(ii)    from (i) and (ii) we get a=((15)/2), b=5.  ⇒A(0,((15)/2)), B(5,5)

$${calculus}\:{method}: \\ $$$${say}\:{A}\left(\mathrm{0},{a}\right),\:{B}\left({b},{b}\right) \\ $$$${perimeter}\:={p} \\ $$$${p}=\sqrt{\mathrm{3}^{\mathrm{2}} +\left(\mathrm{9}−{a}\right)^{\mathrm{2}} }+\sqrt{\left(\mathrm{3}−{b}\right)^{\mathrm{2}} +\left(\mathrm{9}−{b}\right)^{\mathrm{2}} }+\sqrt{{b}^{\mathrm{2}} +\left({b}−{a}\right)^{\mathrm{2}} } \\ $$$${p}=\sqrt{\mathrm{90}−\mathrm{18}{a}+{a}^{\mathrm{2}} }+\sqrt{\mathrm{90}−\mathrm{24}{b}+\mathrm{2}{b}^{\mathrm{2}} }+\sqrt{\mathrm{2}{b}^{\mathrm{2}} −\mathrm{2}{ab}+{a}^{\mathrm{2}} } \\ $$$$\frac{\partial{p}}{\partial{a}}=\frac{−\mathrm{9}+{a}}{\sqrt{\mathrm{90}−\mathrm{18}{a}+{a}^{\mathrm{2}} }}+\frac{−{b}+{a}}{\sqrt{\mathrm{2}{b}^{\mathrm{2}} −\mathrm{2}{ab}+{a}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\Rightarrow\frac{\mathrm{9}−{a}}{\sqrt{\mathrm{90}−\mathrm{18}{a}+{a}^{\mathrm{2}} }}=\frac{{a}−{b}}{\sqrt{\mathrm{2}{b}^{\mathrm{2}} −\mathrm{2}{ab}+{a}^{\mathrm{2}} }}\:\:\:...\left({i}\right) \\ $$$$\frac{\partial{p}}{\partial{b}}=\frac{−\mathrm{12}+\mathrm{2}{b}}{\sqrt{\mathrm{90}−\mathrm{24}{b}+\mathrm{2}{b}^{\mathrm{2}} }}+\frac{\mathrm{2}{b}−{a}}{\sqrt{\mathrm{2}{b}^{\mathrm{2}} −\mathrm{2}{ab}+{a}^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\frac{\mathrm{12}−\mathrm{2}{b}}{\sqrt{\mathrm{90}−\mathrm{24}{b}+\mathrm{2}{b}^{\mathrm{2}} }}=\frac{\mathrm{2}{b}−{a}}{\sqrt{\mathrm{2}{b}^{\mathrm{2}} −\mathrm{2}{ab}+{a}^{\mathrm{2}} }}\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{we}\:{get}\:{a}=\frac{\mathrm{15}}{\mathrm{2}},\:{b}=\mathrm{5}. \\ $$$$\Rightarrow{A}\left(\mathrm{0},\frac{\mathrm{15}}{\mathrm{2}}\right),\:{B}\left(\mathrm{5},\mathrm{5}\right) \\ $$

Commented by mr W last updated on 17/Feb/20

santu sir:  please check your comment again.  look carefully at the picture:  on the line y=x is the point B(5,5) and  on y−axis is the point A(0, 7.5).  what is wrong?

$${santu}\:{sir}: \\ $$$${please}\:{check}\:{your}\:{comment}\:{again}. \\ $$$${look}\:{carefully}\:{at}\:{the}\:{picture}: \\ $$$${on}\:{the}\:{line}\:{y}={x}\:{is}\:{the}\:{point}\:{B}\left(\mathrm{5},\mathrm{5}\right)\:{and} \\ $$$${on}\:{y}−{axis}\:{is}\:{the}\:{point}\:{A}\left(\mathrm{0},\:\mathrm{7}.\mathrm{5}\right). \\ $$$${what}\:{is}\:{wrong}? \\ $$

Answered by ajfour last updated on 17/Feb/20

p=(√(9+(9−y)^2 ))+(√((h−3)^2 +(9−h)^2 ))          +(√(h^2 +(y−h)^2 ))  (∂p/∂y)=−((9−y)/(√(9+(9−y)^2 )))+((y−h)/(√(h^2 +(y−h)^2 )))=0  ⇒   (9−y)^2 h^2 =9(y−h)^2   ⇒    h(9−y)=3(y−h)                12h−hy−3y=0    ⇒     y=((12h)/(h+3))    ....(i)  (∂p/∂h)=(((h−3)−(9−h))/(√((h−3)^2 +(9−h)^2 )))                  +((h−(y−h))/(√(h^2 +(y−h)^2 ))) = 0      ⇒   ((2h−12)/(√((h−3)^2 +(9−h)^2 )))                      =((2h−y)/(√(h^2 +(y−h)^2 )))        4(h−6)^2 {h^2 +(y−h)^2 }       =(2h−y)^2 {(h−3)^2 +(9−h)^2 }  ⇒  4(h−6)^2 {h^2 +(((12h)/(h+3))−h)^2 }         = (2h−((12h)/(h+3)))^2 {2h^2 −24h+90}  ⇒   4(h−6)^2 {h^2 (h+3)^2 +h^2 (9−h)^2 }      = 2×4h^2 (h−3)^2 (h^2 −12h+45)  ⇒  (h−6)^2 (h^2 −6h+45)         = (h−3)^2 (h^2 −12h+45)  ⇒  6h{2(h−3)^2 −(h−6)^2 }            =(h^2 +45)(6h−27)  ⇒   2h(h^2 −18)=(h^2 +45)(2h−9)  ⇒   −36h=−9h^2 +90h−9×45  ⇒ h^2 −14h+45=0  ⇒    (h−9)(h−5)=0  ⇒   h=5, 9          y=((12h)/(h+3))= ((15)/2), 9  so    P(3,9) given , A(0,((15)/2))  on y-axis    B (5,5)   on y=x.     minimum perimeter 6(√5) .  Another set      P(3,9) , A(0,9) , B(9,9)  In this case perimeter is 18.  Area is zero.

$${p}=\sqrt{\mathrm{9}+\left(\mathrm{9}−{y}\right)^{\mathrm{2}} }+\sqrt{\left({h}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{9}−{h}\right)^{\mathrm{2}} } \\ $$$$\:\:\:\:\:\:\:\:+\sqrt{{h}^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} } \\ $$$$\frac{\partial{p}}{\partial{y}}=−\frac{\mathrm{9}−{y}}{\sqrt{\mathrm{9}+\left(\mathrm{9}−{y}\right)^{\mathrm{2}} }}+\frac{{y}−{h}}{\sqrt{{h}^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} }}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\left(\mathrm{9}−{y}\right)^{\mathrm{2}} {h}^{\mathrm{2}} =\mathrm{9}\left({y}−{h}\right)^{\mathrm{2}} \\ $$$$\Rightarrow\:\:\:\:{h}\left(\mathrm{9}−{y}\right)=\mathrm{3}\left({y}−{h}\right) \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\mathrm{12}{h}−{hy}−\mathrm{3}{y}=\mathrm{0} \\ $$$$\:\:\Rightarrow\:\:\:\:\:{y}=\frac{\mathrm{12}{h}}{{h}+\mathrm{3}}\:\:\:\:....\left({i}\right) \\ $$$$\frac{\partial{p}}{\partial{h}}=\frac{\left({h}−\mathrm{3}\right)−\left(\mathrm{9}−{h}\right)}{\sqrt{\left({h}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{9}−{h}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:+\frac{{h}−\left({y}−{h}\right)}{\sqrt{{h}^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} }}\:=\:\mathrm{0} \\ $$$$\:\:\:\:\Rightarrow\:\:\:\frac{\mathrm{2}{h}−\mathrm{12}}{\sqrt{\left({h}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{9}−{h}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:=\frac{\mathrm{2}{h}−{y}}{\sqrt{{h}^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} }} \\ $$$$\:\:\:\:\:\:\mathrm{4}\left({h}−\mathrm{6}\right)^{\mathrm{2}} \left\{{h}^{\mathrm{2}} +\left({y}−{h}\right)^{\mathrm{2}} \right\} \\ $$$$\:\:\:\:\:=\left(\mathrm{2}{h}−{y}\right)^{\mathrm{2}} \left\{\left({h}−\mathrm{3}\right)^{\mathrm{2}} +\left(\mathrm{9}−{h}\right)^{\mathrm{2}} \right\} \\ $$$$\Rightarrow\:\:\mathrm{4}\left({h}−\mathrm{6}\right)^{\mathrm{2}} \left\{{h}^{\mathrm{2}} +\left(\frac{\mathrm{12}{h}}{{h}+\mathrm{3}}−{h}\right)^{\mathrm{2}} \right\} \\ $$$$\:\:\:\:\:\:\:=\:\left(\mathrm{2}{h}−\frac{\mathrm{12}{h}}{{h}+\mathrm{3}}\right)^{\mathrm{2}} \left\{\mathrm{2}{h}^{\mathrm{2}} −\mathrm{24}{h}+\mathrm{90}\right\} \\ $$$$\Rightarrow\:\:\:\mathrm{4}\left({h}−\mathrm{6}\right)^{\mathrm{2}} \left\{{h}^{\mathrm{2}} \left({h}+\mathrm{3}\right)^{\mathrm{2}} +{h}^{\mathrm{2}} \left(\mathrm{9}−{h}\right)^{\mathrm{2}} \right\} \\ $$$$\:\:\:\:=\:\mathrm{2}×\mathrm{4}{h}^{\mathrm{2}} \left({h}−\mathrm{3}\right)^{\mathrm{2}} \left({h}^{\mathrm{2}} −\mathrm{12}{h}+\mathrm{45}\right) \\ $$$$\Rightarrow\:\:\left({h}−\mathrm{6}\right)^{\mathrm{2}} \left({h}^{\mathrm{2}} −\mathrm{6}{h}+\mathrm{45}\right) \\ $$$$\:\:\:\:\:\:\:=\:\left({h}−\mathrm{3}\right)^{\mathrm{2}} \left({h}^{\mathrm{2}} −\mathrm{12}{h}+\mathrm{45}\right) \\ $$$$\Rightarrow\:\:\mathrm{6}{h}\left\{\mathrm{2}\left({h}−\mathrm{3}\right)^{\mathrm{2}} −\left({h}−\mathrm{6}\right)^{\mathrm{2}} \right\} \\ $$$$\:\:\:\:\:\:\:\:\:\:=\left({h}^{\mathrm{2}} +\mathrm{45}\right)\left(\mathrm{6}{h}−\mathrm{27}\right) \\ $$$$\Rightarrow\:\:\:\mathrm{2}{h}\left({h}^{\mathrm{2}} −\mathrm{18}\right)=\left({h}^{\mathrm{2}} +\mathrm{45}\right)\left(\mathrm{2}{h}−\mathrm{9}\right) \\ $$$$\Rightarrow\:\:\:−\mathrm{36}{h}=−\mathrm{9}{h}^{\mathrm{2}} +\mathrm{90}{h}−\mathrm{9}×\mathrm{45} \\ $$$$\Rightarrow\:{h}^{\mathrm{2}} −\mathrm{14}{h}+\mathrm{45}=\mathrm{0} \\ $$$$\Rightarrow\:\:\:\:\left({h}−\mathrm{9}\right)\left({h}−\mathrm{5}\right)=\mathrm{0} \\ $$$$\Rightarrow\:\:\:{h}=\mathrm{5},\:\mathrm{9} \\ $$$$\:\:\:\:\:\:\:\:{y}=\frac{\mathrm{12}{h}}{{h}+\mathrm{3}}=\:\frac{\mathrm{15}}{\mathrm{2}},\:\mathrm{9} \\ $$$${so} \\ $$$$\:\:{P}\left(\mathrm{3},\mathrm{9}\right)\:{given}\:,\:{A}\left(\mathrm{0},\frac{\mathrm{15}}{\mathrm{2}}\right)\:\:{on}\:{y}-{axis} \\ $$$$\:\:{B}\:\left(\mathrm{5},\mathrm{5}\right)\:\:\:{on}\:{y}={x}.\:\: \\ $$$$\:{minimum}\:{perimeter}\:\mathrm{6}\sqrt{\mathrm{5}}\:. \\ $$$${Another}\:{set} \\ $$$$\:\:\:\:{P}\left(\mathrm{3},\mathrm{9}\right)\:,\:{A}\left(\mathrm{0},\mathrm{9}\right)\:,\:{B}\left(\mathrm{9},\mathrm{9}\right) \\ $$$${In}\:{this}\:{case}\:{perimeter}\:{is}\:\mathrm{18}. \\ $$$${Area}\:{is}\:{zero}. \\ $$

Commented by mr W last updated on 17/Feb/20

thanks for confirming sir!

$${thanks}\:{for}\:{confirming}\:{sir}! \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com