Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 82018 by TawaTawa last updated on 17/Feb/20

Differentiate     y  =  2^x     from the first principle.

$$\mathrm{Differentiate}\:\:\:\:\:\mathrm{y}\:\:=\:\:\mathrm{2}^{\mathrm{x}} \:\:\:\:\mathrm{from}\:\mathrm{the}\:\mathrm{first}\:\mathrm{principle}. \\ $$

Commented by john santu last updated on 17/Feb/20

ln y = x ln 2  lim_(h→0)  ln(y)  = lim_(h→0) ln(2) (((x+h)−x)/h)  ((y′)/y) = ln(2) lim_(h→0)  (h/h)  y′ = y.ln(2) = 2^( x)  .ln(2)

$${ln}\:{y}\:=\:{x}\:{ln}\:\mathrm{2} \\ $$$$\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:{ln}\left({y}\right)\:\:=\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}{ln}\left(\mathrm{2}\right)\:\frac{\left({x}+{h}\right)−{x}}{{h}} \\ $$$$\frac{{y}'}{{y}}\:=\:{ln}\left(\mathrm{2}\right)\:\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{h}}{{h}} \\ $$$${y}'\:=\:{y}.{ln}\left(\mathrm{2}\right)\:=\:\mathrm{2}^{\:{x}} \:.{ln}\left(\mathrm{2}\right) \\ $$

Commented by TawaTawa last updated on 17/Feb/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by TANMAY PANACEA last updated on 17/Feb/20

y+△y=2^(x+△x)   △y=2^(x+△x) −2^x =2^x (2^(△x) −1)  (dy/dx)=lim_(△x→0)  ((△y)/(△x))=  =lim_(△x→0)  ((2^x (2^(△x) −1))/(△x))  =2^x ×(lim_(△x→0)  ((e^(△x.ln2) −1)/(△x.ln2)))×ln2  =2^x ×1×ln2=2^x ln2

$${y}+\bigtriangleup{y}=\mathrm{2}^{{x}+\bigtriangleup{x}} \\ $$$$\bigtriangleup{y}=\mathrm{2}^{{x}+\bigtriangleup{x}} −\mathrm{2}^{{x}} =\mathrm{2}^{{x}} \left(\mathrm{2}^{\bigtriangleup{x}} −\mathrm{1}\right) \\ $$$$\frac{{dy}}{{dx}}=\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\bigtriangleup{y}}{\bigtriangleup{x}}= \\ $$$$=\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{\mathrm{2}^{{x}} \left(\mathrm{2}^{\bigtriangleup{x}} −\mathrm{1}\right)}{\bigtriangleup{x}} \\ $$$$=\mathrm{2}^{{x}} ×\left(\underset{\bigtriangleup{x}\rightarrow\mathrm{0}} {\mathrm{lim}}\:\frac{{e}^{\bigtriangleup{x}.{ln}\mathrm{2}} −\mathrm{1}}{\bigtriangleup{x}.{ln}\mathrm{2}}\right)×{ln}\mathrm{2} \\ $$$$=\mathrm{2}^{{x}} ×\mathrm{1}×{ln}\mathrm{2}=\mathrm{2}^{{x}} {ln}\mathrm{2} \\ $$

Commented by TawaTawa last updated on 17/Feb/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Answered by mr W last updated on 17/Feb/20

y′=lim_(h→0) ((2^(x+h) −2^x )/h)  =2^x lim_(h→0) ((2^h −1)/h)  =2^x lim_(h→0) ((e^(hln 2) −1)/h)  =2^x lim_(h→0) (([1+hln 2+(((hln 2)^2 )/(2!))+(((hln 2)^3 )/(3!))+...]−1)/h)  =2^x lim_(h→0) [ln 2+((h(ln 2)^2 )/(2!))+((h^2 (ln 2)^3 )/(3!))+...]  =2^x ln 2

$${y}'=\underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}^{{x}+{h}} −\mathrm{2}^{{x}} }{{h}} \\ $$$$=\mathrm{2}^{{x}} \underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\mathrm{2}^{{h}} −\mathrm{1}}{{h}} \\ $$$$=\mathrm{2}^{{x}} \underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{{e}^{{h}\mathrm{ln}\:\mathrm{2}} −\mathrm{1}}{{h}} \\ $$$$=\mathrm{2}^{{x}} \underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\frac{\left[\mathrm{1}+{h}\mathrm{ln}\:\mathrm{2}+\frac{\left({h}\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{\left({h}\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{3}} }{\mathrm{3}!}+...\right]−\mathrm{1}}{{h}} \\ $$$$=\mathrm{2}^{{x}} \underset{{h}\rightarrow\mathrm{0}} {\mathrm{lim}}\left[\mathrm{ln}\:\mathrm{2}+\frac{{h}\left(\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{2}} }{\mathrm{2}!}+\frac{{h}^{\mathrm{2}} \left(\mathrm{ln}\:\mathrm{2}\right)^{\mathrm{3}} }{\mathrm{3}!}+...\right] \\ $$$$=\mathrm{2}^{{x}} \mathrm{ln}\:\mathrm{2} \\ $$

Commented by TawaTawa last updated on 17/Feb/20

God bless you sir

$$\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com