Question and Answers Forum

All Questions      Topic List

Mensuration Questions

Previous in All Question      Next in All Question      

Previous in Mensuration      Next in Mensuration      

Question Number 82067 by john santu last updated on 18/Feb/20

 { ((∣x∣ −((y+3 ))^(1/(3 ))  = 1)),(((−x(√(−x)))^2  = y +10)) :}  find solution

$$\begin{cases}{\mid{x}\mid\:−\sqrt[{\mathrm{3}\:}]{{y}+\mathrm{3}\:}\:=\:\mathrm{1}}\\{\left(−{x}\sqrt{−{x}}\right)^{\mathrm{2}} \:=\:{y}\:+\mathrm{10}}\end{cases} \\ $$$${find}\:{solution} \\ $$

Commented by john santu last updated on 18/Feb/20

Commented by MJS last updated on 18/Feb/20

there′s also a complex solution:  x=1±i(√3)  y=−2

$$\mathrm{there}'\mathrm{s}\:\mathrm{also}\:\mathrm{a}\:\mathrm{complex}\:\mathrm{solution}: \\ $$$${x}=\mathrm{1}\pm\mathrm{i}\sqrt{\mathrm{3}} \\ $$$${y}=−\mathrm{2} \\ $$

Commented by john santu last updated on 18/Feb/20

where did you get it? isn′t the condition  x must be ≤ 0?

$${where}\:{did}\:{you}\:{get}\:{it}?\:{isn}'{t}\:{the}\:{condition} \\ $$$${x}\:{must}\:{be}\:\leqslant\:\mathrm{0}? \\ $$

Commented by MJS last updated on 18/Feb/20

x≤0 if x∈R  if x∈C ⇒ (√(−x)) always exists

$${x}\leqslant\mathrm{0}\:\mathrm{if}\:{x}\in\mathbb{R} \\ $$$$\mathrm{if}\:{x}\in\mathbb{C}\:\Rightarrow\:\sqrt{−{x}}\:\mathrm{always}\:\mathrm{exists} \\ $$

Commented by john santu last updated on 18/Feb/20

yes sir. your right

$${yes}\:{sir}.\:{your}\:{right} \\ $$

Answered by MJS last updated on 18/Feb/20

 { ((y=∣x∣^3 −3∣x∣^2 +3∣x∣−4 ⇒ y∈R∀x∈C)),((y=−x^3 −10)) :}  ⇒ −x^3 −10∈R    ∣x∣^3 −3∣x∣^2 +3∣x∣−4=−x^3 −10  let x=a+bi  (√(a^2 +b^2 ))(a^2 +b^2 +3)+a^3 −3(a^2 +ab^2 +b^2 −2)+i(3a^2 −b^2 )b=0   { (((√(a^2 +b^2 ))(a^2 +b^2 +3)+a^3 −3(a^2 +ab^2 +b^2 −2)=0)),(((3a^2 −b^2 )b=0 ⇒ b=0∨b=±a(√3))) :}  (1) b=0  ∣a∣^3 +a^3 −3a^2 +3∣a∣+6=0       (1.1) a>0       2a^3 −3a^2 +3a+6=0 ⇒ a≈−.854 no solution       (1.2) a<0       −3a^2 −3a+6=0 ⇒ a=−2∨a=1 ⇒ a=−2  x_1 =−2∧y_1 =−2    (2) b=±a(√3)  8∣a∣^3 −8a^3 −12a^2 +6∣a∣+6=0       (2.1) a<0       −16a^3 −12a^2 −6a+6=0 ⇒ a≈.427 no solution       (2.2) a>0       −12a^2 +6a+6=0 ⇒ −(1/2)∨a=1 ⇒ a=1  x_(2, 3) =1±i(√3)∧y_(2, 3) =−2

$$\begin{cases}{{y}=\mid{x}\mid^{\mathrm{3}} −\mathrm{3}\mid{x}\mid^{\mathrm{2}} +\mathrm{3}\mid{x}\mid−\mathrm{4}\:\Rightarrow\:{y}\in\mathbb{R}\forall{x}\in\mathbb{C}}\\{{y}=−{x}^{\mathrm{3}} −\mathrm{10}}\end{cases} \\ $$$$\Rightarrow\:−{x}^{\mathrm{3}} −\mathrm{10}\in\mathbb{R} \\ $$$$ \\ $$$$\mid{x}\mid^{\mathrm{3}} −\mathrm{3}\mid{x}\mid^{\mathrm{2}} +\mathrm{3}\mid{x}\mid−\mathrm{4}=−{x}^{\mathrm{3}} −\mathrm{10} \\ $$$$\mathrm{let}\:{x}={a}+{b}\mathrm{i} \\ $$$$\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{3}\right)+{a}^{\mathrm{3}} −\mathrm{3}\left({a}^{\mathrm{2}} +{ab}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}\right)+\mathrm{i}\left(\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){b}=\mathrm{0} \\ $$$$\begin{cases}{\sqrt{{a}^{\mathrm{2}} +{b}^{\mathrm{2}} }\left({a}^{\mathrm{2}} +{b}^{\mathrm{2}} +\mathrm{3}\right)+{a}^{\mathrm{3}} −\mathrm{3}\left({a}^{\mathrm{2}} +{ab}^{\mathrm{2}} +{b}^{\mathrm{2}} −\mathrm{2}\right)=\mathrm{0}}\\{\left(\mathrm{3}{a}^{\mathrm{2}} −{b}^{\mathrm{2}} \right){b}=\mathrm{0}\:\Rightarrow\:{b}=\mathrm{0}\vee{b}=\pm{a}\sqrt{\mathrm{3}}}\end{cases} \\ $$$$\left(\mathrm{1}\right)\:{b}=\mathrm{0} \\ $$$$\mid{a}\mid^{\mathrm{3}} +{a}^{\mathrm{3}} −\mathrm{3}{a}^{\mathrm{2}} +\mathrm{3}\mid{a}\mid+\mathrm{6}=\mathrm{0} \\ $$$$\:\:\:\:\:\left(\mathrm{1}.\mathrm{1}\right)\:{a}>\mathrm{0} \\ $$$$\:\:\:\:\:\mathrm{2}{a}^{\mathrm{3}} −\mathrm{3}{a}^{\mathrm{2}} +\mathrm{3}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:{a}\approx−.\mathrm{854}\:\mathrm{no}\:\mathrm{solution} \\ $$$$\:\:\:\:\:\left(\mathrm{1}.\mathrm{2}\right)\:{a}<\mathrm{0} \\ $$$$\:\:\:\:\:−\mathrm{3}{a}^{\mathrm{2}} −\mathrm{3}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:{a}=−\mathrm{2}\vee{a}=\mathrm{1}\:\Rightarrow\:{a}=−\mathrm{2} \\ $$$${x}_{\mathrm{1}} =−\mathrm{2}\wedge{y}_{\mathrm{1}} =−\mathrm{2} \\ $$$$ \\ $$$$\left(\mathrm{2}\right)\:{b}=\pm{a}\sqrt{\mathrm{3}} \\ $$$$\mathrm{8}\mid{a}\mid^{\mathrm{3}} −\mathrm{8}{a}^{\mathrm{3}} −\mathrm{12}{a}^{\mathrm{2}} +\mathrm{6}\mid{a}\mid+\mathrm{6}=\mathrm{0} \\ $$$$\:\:\:\:\:\left(\mathrm{2}.\mathrm{1}\right)\:{a}<\mathrm{0} \\ $$$$\:\:\:\:\:−\mathrm{16}{a}^{\mathrm{3}} −\mathrm{12}{a}^{\mathrm{2}} −\mathrm{6}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:{a}\approx.\mathrm{427}\:\mathrm{no}\:\mathrm{solution} \\ $$$$\:\:\:\:\:\left(\mathrm{2}.\mathrm{2}\right)\:{a}>\mathrm{0} \\ $$$$\:\:\:\:\:−\mathrm{12}{a}^{\mathrm{2}} +\mathrm{6}{a}+\mathrm{6}=\mathrm{0}\:\Rightarrow\:−\frac{\mathrm{1}}{\mathrm{2}}\vee{a}=\mathrm{1}\:\Rightarrow\:{a}=\mathrm{1} \\ $$$${x}_{\mathrm{2},\:\mathrm{3}} =\mathrm{1}\pm\mathrm{i}\sqrt{\mathrm{3}}\wedge{y}_{\mathrm{2},\:\mathrm{3}} =−\mathrm{2} \\ $$

Commented by john santu last updated on 18/Feb/20

okay sir. i agree your way

$${okay}\:{sir}.\:{i}\:{agree}\:{your}\:{way}\: \\ $$

Commented by MJS last updated on 18/Feb/20

just for fun, I always try to find complex  solutions too

$$\mathrm{just}\:\mathrm{for}\:\mathrm{fun},\:\mathrm{I}\:\mathrm{always}\:\mathrm{try}\:\mathrm{to}\:\mathrm{find}\:\mathrm{complex} \\ $$$$\mathrm{solutions}\:\mathrm{too} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com