All Questions Topic List
Limits Questions
Previous in All Question Next in All Question
Previous in Limits Next in Limits
Question Number 82160 by M±th+et£s last updated on 18/Feb/20
provethatlimx→∞n2(1−cos(1n)(1−cos1n)(1−cos1n)...=12
Answered by MJS last updated on 18/Feb/20
w=(1−cos1n)(1−cos1n)...w2=(1−cos1n)w⇒w=0∨w=1−cos1n...=limn→∞n2(1−cos1n)letn=1klimk→01−coskk2=limk→0d2dk2[1−cosk]d2dk2[k2]==limk→0cosk2=12
Answered by mr W last updated on 18/Feb/20
1−cos1n=2sin212nlimn→∞n2(1−cos(1n)(1−cos1n)(1−cos1n)...=limn→∞n2(2sin212n)12+14+18+116+...=limn→∞n2(2sin212n)12×11−12=limn→∞n2(2sin212n)=limn→∞12(sin12n12n)2=12×1=12
Terms of Service
Privacy Policy
Contact: info@tinkutara.com