Question and Answers Forum

All Questions      Topic List

Limits Questions

Previous in All Question      Next in All Question      

Previous in Limits      Next in Limits      

Question Number 82160 by M±th+et£s last updated on 18/Feb/20

prove that  lim_(x→∞)  n^2  (√((1−cos((1/n))(√((1−cos(1/n))(√((1−cos(1/n))...)))))) =(1/2)

provethatlimxn2(1cos(1n)(1cos1n)(1cos1n)...=12

Answered by MJS last updated on 18/Feb/20

w=(√((1−cos (1/n))(√((1−cos (1/n))(√(...))))))  w^2 =(1−cos (1/n))w ⇒ w=0∨w=1−cos (1/n)  ...=lim_(n→∞)  n^2 (1−cos (1/n))  let n=(1/k)  lim_(k→0)  ((1−cos k)/k^2 ) =lim_(k→0)  (((d^2 /dk^2 )[1−cos k])/((d^2 /dk^2 )[k^2 ])) =  =lim_(k→0)  ((cos k)/2) =(1/2)

w=(1cos1n)(1cos1n)...w2=(1cos1n)ww=0w=1cos1n...=limnn2(1cos1n)letn=1klimk01coskk2=limk0d2dk2[1cosk]d2dk2[k2]==limk0cosk2=12

Answered by mr W last updated on 18/Feb/20

1−cos (1/n)=2 sin^2  (1/(2n))  lim_(n→∞)  n^2  (√((1−cos((1/n))(√((1−cos(1/n))(√((1−cos(1/n))...))))))   =lim_(n→∞)  n^2  (2 sin^2  (1/(2n)))^((1/2)+(1/4)+(1/8)+(1/(16))+...)   =lim_(n→∞)  n^2  (2 sin^2  (1/(2n)))^((1/2)×(1/(1−(1/2))))   =lim_(n→∞)  n^2  (2 sin^2  (1/(2n)))  =lim_(n→∞)  (1/2)(((sin (1/(2n)))/(1/(2n))))^2   =(1/2)×1=(1/2)

1cos1n=2sin212nlimnn2(1cos(1n)(1cos1n)(1cos1n)...=limnn2(2sin212n)12+14+18+116+...=limnn2(2sin212n)12×1112=limnn2(2sin212n)=limn12(sin12n12n)2=12×1=12

Terms of Service

Privacy Policy

Contact: info@tinkutara.com