Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 82191 by jagoll last updated on 19/Feb/20

find the solution  (√(x^2 −3x−4 ))  >  x−2

$${find}\:{the}\:{solution} \\ $$ $$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:}\:\:>\:\:{x}−\mathrm{2}\: \\ $$

Commented byarkanmath7@gmail.com last updated on 19/Feb/20

x^2 −3x−4   >  x^2 −4x+4  −3x−4   >  −4x+4  x   >  8  S.S. = {x:x>8}   Or S.S.={(8,∞)}  so easy

$${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:\:\:>\:\:{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4} \\ $$ $$−\mathrm{3}{x}−\mathrm{4}\:\:\:>\:\:−\mathrm{4}{x}+\mathrm{4} \\ $$ $${x}\:\:\:>\:\:\mathrm{8} \\ $$ $${S}.{S}.\:=\:\left\{{x}:{x}>\mathrm{8}\right\}\: \\ $$ $${Or}\:{S}.{S}.=\left\{\left(\mathrm{8},\infty\right)\right\} \\ $$ $${so}\:{easy} \\ $$

Commented byjagoll last updated on 19/Feb/20

tes for x = −1   (√(1+3−4)) > −3   0 > −3 is correct sir

$${tes}\:{for}\:{x}\:=\:−\mathrm{1}\: \\ $$ $$\sqrt{\mathrm{1}+\mathrm{3}−\mathrm{4}}\:>\:−\mathrm{3}\: \\ $$ $$\mathrm{0}\:>\:−\mathrm{3}\:{is}\:{correct}\:{sir} \\ $$

Commented byjagoll last updated on 19/Feb/20

x = −1 ∉ (8,∞) but x=−1 is solution

$${x}\:=\:−\mathrm{1}\:\notin\:\left(\mathrm{8},\infty\right)\:{but}\:{x}=−\mathrm{1}\:{is}\:{solution} \\ $$

Commented bymr W last updated on 19/Feb/20

(√((x−4)(x+1)))>x−2  solution:  x≤−1 ∨ x>8

$$\sqrt{\left({x}−\mathrm{4}\right)\left({x}+\mathrm{1}\right)}>{x}−\mathrm{2} \\ $$ $${solution}: \\ $$ $${x}\leqslant−\mathrm{1}\:\vee\:{x}>\mathrm{8} \\ $$

Commented byarkanmath7@gmail.com last updated on 19/Feb/20

I think that′s true if you said (√(x^2 −3x−4)) ≥0  not when (√(x^2 −3x−4)) >x−2  put x=−1 in the 2nd line of the solution  you will get a rong statement

$${I}\:{think}\:{that}'{s}\:{true}\:{if}\:{you}\:{said}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\:\geqslant\mathrm{0} \\ $$ $${not}\:{when}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\:>{x}−\mathrm{2} \\ $$ $${put}\:{x}=−\mathrm{1}\:{in}\:{the}\:\mathrm{2}{nd}\:{line}\:{of}\:{the}\:{solution} \\ $$ $${you}\:{will}\:{get}\:{a}\:{rong}\:{statement} \\ $$ $$ \\ $$

Commented byKunal12588 last updated on 19/Feb/20

x > 8   and (√((x+1)(x−4)))>(x−2)  ⇒(((x+1)(x−4))/((x−2)^2 ))>0  ⇒x<−1

$${x}\:>\:\mathrm{8}\: \\ $$ $${and}\:\sqrt{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{4}\right)}>\left({x}−\mathrm{2}\right) \\ $$ $$\Rightarrow\frac{\left({x}+\mathrm{1}\right)\left({x}−\mathrm{4}\right)}{\left({x}−\mathrm{2}\right)^{\mathrm{2}} }>\mathrm{0} \\ $$ $$\Rightarrow{x}<−\mathrm{1} \\ $$

Commented bymr W last updated on 19/Feb/20

why use if (√(x^2 −3x−4))≥0 ? it is always  true that (√(x^2 −3x−4))≥0.

$${why}\:{use}\:{if}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0}\:?\:{it}\:{is}\:{always} \\ $$ $${true}\:{that}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0}. \\ $$

Commented byjagoll last updated on 19/Feb/20

so what is the answer conclusion?  x≤−1 ∨x> 8   or x > 8?

$${so}\:{what}\:{is}\:{the}\:{answer}\:{conclusion}? \\ $$ $${x}\leqslant−\mathrm{1}\:\vee{x}>\:\mathrm{8}\: \\ $$ $${or}\:{x}\:>\:\mathrm{8}? \\ $$

Commented bymr W last updated on 19/Feb/20

when x≤−1, x−2≤−3, but   (√(x^2 −3x−4))≥0, therefore   (√(x^2 −3x−4))>x−2 is true. and x=−1  is also included.

$${when}\:{x}\leqslant−\mathrm{1},\:{x}−\mathrm{2}\leqslant−\mathrm{3},\:{but}\: \\ $$ $$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0},\:{therefore}\: \\ $$ $$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}>{x}−\mathrm{2}\:{is}\:{true}.\:{and}\:{x}=−\mathrm{1} \\ $$ $${is}\:{also}\:{included}. \\ $$

Commented bymr W last updated on 19/Feb/20

the result is  x≤−1 ∨ x> 8   that means x∈ (−∞,−1] or x∈(8,+∞)

$${the}\:{result}\:{is} \\ $$ $${x}\leqslant−\mathrm{1}\:\vee\:{x}>\:\mathrm{8}\: \\ $$ $${that}\:{means}\:{x}\in\:\left(−\infty,−\mathrm{1}\right]\:{or}\:{x}\in\left(\mathrm{8},+\infty\right) \\ $$

Commented byjagoll last updated on 19/Feb/20

yes sir. i agree. but my teacher   blamed my answer

$${yes}\:{sir}.\:{i}\:{agree}.\:{but}\:{my}\:{teacher}\: \\ $$ $${blamed}\:{my}\:{answer} \\ $$

Commented byarkanmath7@gmail.com last updated on 19/Feb/20

  confused quest  i think you are the truest

$$ \\ $$ $${confused}\:{quest} \\ $$ $${i}\:{think}\:{you}\:{are}\:{the}\:{truest} \\ $$

Commented byjagoll last updated on 19/Feb/20

haha...if the most correct ,   surely God sir

$${haha}...{if}\:{the}\:{most}\:{correct}\:,\: \\ $$ $${surely}\:{God}\:{sir} \\ $$

Commented bymr W last updated on 19/Feb/20

be very careful with squaring by  inequlity! it may change the validity  range of the original inequality!

$${be}\:{very}\:{careful}\:{with}\:{squaring}\:{by} \\ $$ $${inequlity}!\:{it}\:{may}\:{change}\:{the}\:{validity} \\ $$ $${range}\:{of}\:{the}\:{original}\:{inequality}! \\ $$

Commented byjagoll last updated on 19/Feb/20

please sir post your step solution

$${please}\:{sir}\:{post}\:{your}\:{step}\:{solution} \\ $$

Commented byjagoll last updated on 19/Feb/20

Commented byjagoll last updated on 19/Feb/20

it sir by graphic

$${it}\:{sir}\:{by}\:{graphic} \\ $$

Commented bymathmax by abdo last updated on 19/Feb/20

the inequation is defined  for x≥2 and x^2 −3x−4≥0  Δ=(−3)^2 −4(−4)=9+16=25 ⇒x_1 =((3+5)/2)=4 and x_2 =((3−5)/2)=−1  x^2 −3x−4≥0 ⇒x∈]−∞,−1[∪]4,+∞[ ⇒ D_(in) =[2,+∞[  (in)⇒x^2 −3x−4>x^2 −4x +4 ⇒x>8 ⇒S =[8,+∞[

$${the}\:{inequation}\:{is}\:{defined}\:\:{for}\:{x}\geqslant\mathrm{2}\:{and}\:{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\geqslant\mathrm{0} \\ $$ $$\Delta=\left(−\mathrm{3}\right)^{\mathrm{2}} −\mathrm{4}\left(−\mathrm{4}\right)=\mathrm{9}+\mathrm{16}=\mathrm{25}\:\Rightarrow{x}_{\mathrm{1}} =\frac{\mathrm{3}+\mathrm{5}}{\mathrm{2}}=\mathrm{4}\:{and}\:{x}_{\mathrm{2}} =\frac{\mathrm{3}−\mathrm{5}}{\mathrm{2}}=−\mathrm{1} \\ $$ $$\left.{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\geqslant\mathrm{0}\:\Rightarrow{x}\in\right]−\infty,−\mathrm{1}\left[\cup\right]\mathrm{4},+\infty\left[\:\Rightarrow\:{D}_{{in}} =\left[\mathrm{2},+\infty\left[\right.\right.\right. \\ $$ $$\left({in}\right)\Rightarrow{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}>{x}^{\mathrm{2}} −\mathrm{4}{x}\:+\mathrm{4}\:\Rightarrow{x}>\mathrm{8}\:\Rightarrow{S}\:=\left[\mathrm{8},+\infty\left[\right.\right. \\ $$

Commented byjagoll last updated on 19/Feb/20

solution x≤−1 ∨ x>8

$${solution}\:{x}\leqslant−\mathrm{1}\:\vee\:{x}>\mathrm{8} \\ $$

Answered by mr W last updated on 19/Feb/20

such that (√(x^2 −3x−4)) is defined,  x^2 −3x−4=(x+1)(x−4)≥0  ⇒x≤−1 or x≥4    case 1: x≤−1  with x≤−1, we have x−2≤−3<0  but (√(x^2 −3x−4))≥0, so  (√(x^2 −3x−4 )) >  x−2  is true.  ⇒x≤−1 is solution.    case 2: x≥4  with x≥4, x−2≥6>0  x^2 −3x−4 >(x−2)^2   x^2 −3x−4 >x^2 −4x+4  x>8 ≥4  ⇒x>8 is solution.  (we can use squaring here because we  have ensured at first that x−2>0)    summary of all solutions:  x≤−1  x>8

$${such}\:{that}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\:{is}\:{defined}, \\ $$ $${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}=\left({x}+\mathrm{1}\right)\left({x}−\mathrm{4}\right)\geqslant\mathrm{0} \\ $$ $$\Rightarrow{x}\leqslant−\mathrm{1}\:{or}\:{x}\geqslant\mathrm{4} \\ $$ $$ \\ $$ $${case}\:\mathrm{1}:\:{x}\leqslant−\mathrm{1} \\ $$ $${with}\:{x}\leqslant−\mathrm{1},\:{we}\:{have}\:{x}−\mathrm{2}\leqslant−\mathrm{3}<\mathrm{0} \\ $$ $${but}\:\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}}\geqslant\mathrm{0},\:{so} \\ $$ $$\sqrt{{x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:}\:>\:\:{x}−\mathrm{2}\:\:{is}\:{true}. \\ $$ $$\Rightarrow{x}\leqslant−\mathrm{1}\:{is}\:{solution}. \\ $$ $$ \\ $$ $${case}\:\mathrm{2}:\:{x}\geqslant\mathrm{4} \\ $$ $${with}\:{x}\geqslant\mathrm{4},\:{x}−\mathrm{2}\geqslant\mathrm{6}>\mathrm{0} \\ $$ $${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:>\left({x}−\mathrm{2}\right)^{\mathrm{2}} \\ $$ $${x}^{\mathrm{2}} −\mathrm{3}{x}−\mathrm{4}\:>{x}^{\mathrm{2}} −\mathrm{4}{x}+\mathrm{4} \\ $$ $${x}>\mathrm{8}\:\geqslant\mathrm{4} \\ $$ $$\Rightarrow{x}>\mathrm{8}\:{is}\:{solution}. \\ $$ $$\left({we}\:{can}\:{use}\:{squaring}\:{here}\:{because}\:{we}\right. \\ $$ $$\left.{have}\:{ensured}\:{at}\:{first}\:{that}\:{x}−\mathrm{2}>\mathrm{0}\right) \\ $$ $$ \\ $$ $${summary}\:{of}\:{all}\:{solutions}: \\ $$ $${x}\leqslant−\mathrm{1} \\ $$ $${x}>\mathrm{8} \\ $$

Commented byjagoll last updated on 19/Feb/20

thank you sir

$${thank}\:{you}\:{sir} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com