Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 8224 by trapti rathaur@ gmail.com last updated on 03/Oct/16

if  ∅ lies between   −(π/4) and  (π/4)   then  prove that  ∅^2 =tan^2 ∅ −(1+(1/3))((tan^4 ∅)/2) +(1+(1/3)+(1/5))((tan^6 ∅)/3) +−−−−−                                                                           −−−to ∞ terms

ifliesbetweenπ4andπ4thenprovethat2=tan2(1+13)tan42+(1+13+15)tan63+toterms

Commented by Yozzias last updated on 03/Oct/16

RTP: If b∈(((−π)/4),(π/4))⇒b^2 =Σ_(r=1) ^∞ (−1)^(r−1) (1/r){Σ_(k=1) ^r (1/(2k−1))}tan^(2r) b.  or b^2 =lim_(n→∞) [Σ_(r=1) ^n (−1)^(r−1) (1/r){Σ_(k=1) ^r (1/(2k−1))}tan^(2r) b]

RTP:Ifb(π4,π4)b2=r=1(1)r11r{rk=112k1}tan2rb.orb2=limn[nr=1(1)r11r{rk=112k1}tan2rb]

Commented by trapti rathaur@ gmail.com last updated on 03/Oct/16

Hint−         tan^(−1) x+tan^(−1) y+tan^(−1) z=tan^(−1) ((x+y+z−xyz)/(1−xy−yz−zx))

Hinttan1x+tan1y+tan1z=tan1x+y+zxyz1xyyzzx

Commented by trapti rathaur@ gmail.com last updated on 03/Oct/16

in the question given above hint  so how to solve this question using hint .

inthequestiongivenabovehintsohowtosolvethisquestionusinghint.

Answered by prakash jain last updated on 03/Oct/16

Taylor series expansion for tan^(−1) x  tan^(−1) x=x−(x^3 /3)+(x^5 /5)+−... (for −1<x<1)  (tan^(−1) x)^2 =(x−(x^3 /3)+(x^5 /5)−+...)(x−(x^3 /3)+(x^5 /5)−+...)  when n is even coefficient of x^n  is obtained  by multiplying coeeficients  for example coefficient of x^6 =a_1 a_5 +a_3 a_3 +a_5 a_1          where a_n  is coeffiient of x^n in tan^(−1) x  c_n =coefficient of x^n = { ((Σ_(k=1) ^(n/2) (1/((2k−1)(2(n−k)+1)))),(n even)),(0,(n odd)) :}   Σ_(k=1) ^(n/2) (1/((2k−1)(2(n−k)+1)))        =Σ_(k=1) ^(n/2) (1/n)((1/(2k−1))+(1/(2((n/2)−k)+1)))        =(1/n)(Σ_(k=1) ^(n/2) (1/(2k−1))+Σ_(k=1) ^(n/2) (1/(2((n/2)−k)+1)))        =(1/n)(Σ_(k=1) ^(n/2) (1/(2k−1))+Σ_(k=1) ^(n/2) (1/(2k−1)))  c_2 =(2/n)Σ_(k=1) ^(n/2) (1/(2k−1))  c_n = { (((2/n)Σ_(k=1) ^(n/2) (1/(2k−1))),(n even)),(0,(n odd)) :}  put  x=tan ∅ (−(π/4)<∅<(π/4))  to get the required result

Taylorseriesexpansionfortan1xtan1x=xx33+x55+...(for1<x<1)(tan1x)2=(xx33+x55+...)(xx33+x55+...)whennisevencoefficientofxnisobtainedbymultiplyingcoeeficientsforexamplecoefficientofx6=a1a5+a3a3+a5a1whereaniscoeffiientofxnintan1xcn=coefficientofxn={n/2k=11(2k1)(2(nk)+1)neven0noddn/2k=11(2k1)(2(nk)+1)=n/2k=11n(12k1+12(n2k)+1)=1n(n/2k=112k1+n/2k=112(n2k)+1)=1n(n/2k=112k1+n/2k=112k1)c2=2nn/2k=112k1cn={2nn/2k=112k1neven0noddputx=tan(π4<<π4)togettherequiredresult

Terms of Service

Privacy Policy

Contact: info@tinkutara.com