Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 82247 by jagoll last updated on 19/Feb/20

(D^4 +2D^2 +1)y =x^2  cos x

(D4+2D2+1)y=x2cosx

Commented by john santu last updated on 20/Feb/20

characteristic equation   λ^4 +2λ^2 +1 = 0   (λ^2 +1)^2  = 0 ⇒(λ^2 −i)^(2 ) (λ^2 +i)^2  =0  λ^2  = i ⇒ λ_(1,2 )  = ± (√( i))   λ^2  = −i ⇒ λ_(3,4)  = ± (√(−i ))   y_h  = Ae^(√( i))  + Be^(−(√(i ))) +Ce^(−(√(−i ))) +De^(√( −i ))

characteristicequationλ4+2λ2+1=0(λ2+1)2=0(λ2i)2(λ2+i)2=0λ2=iλ1,2=±iλ2=iλ3,4=±iyh=Aei+Bei+Cei+Dei

Answered by TANMAY PANACEA last updated on 20/Feb/20

y=((x^2 cosx)/((D^2 +1)^2 ))  y_(real) +y_(imaginary) =((x^2 e^(ix) )/((D^2 +1)^2 ))  =(e^(ix) /([(D+i)^2 +1]^2 ))×x^2   =e^(ix) ×(1/((D^2 +2iD)^2 ))×x^2   =e^(ix) ×(1/D^2 )×(1/((D+2i)^2 ))×x^2   =e^(ix) ×(1/(−4(1+(D/(2i)))^2 ))×(x^4 /(12))   [(1/D^2 )×x^2 =(1/D)×(x^3 /3)=(x^4 /(12))]  now using  (1−a)^(−2) =1+2a+3a^2 +4a^3 +5a^4 +6a^5 +...+(r+1)a^r   put a=−(D/(2i))  =(((cosx+isinx))/(−48))×(1−2.(D/(2i))+3×(D^2 /(−4))+4×(D^3 /(8i))+5×(D^4 /(16)) others terms ignored)x^4   =(((cosx+isinx))/(−48))(x^4 −((4x^3 )/i)−(3/4)×12x^2 +(1/(2i))×24x+(5/(16))×24)  =((cosx+isinx)/(−48))(x^4 −9x^2 +((15)/2)+i×4x^3 −i×12x)  required answer is real part  =((cosx)/(−48))(x^4 −9x^2 +((15)/2))+((sinx)/(−48))×(−1)(4x^3 −12x)  pls check mistakd if any

y=x2cosx(D2+1)2yreal+yimaginary=x2eix(D2+1)2=eix[(D+i)2+1]2×x2=eix×1(D2+2iD)2×x2=eix×1D2×1(D+2i)2×x2=eix×14(1+D2i)2×x412[1D2×x2=1D×x33=x412]nowusing(1a)2=1+2a+3a2+4a3+5a4+6a5+...+(r+1)arputa=D2i=(cosx+isinx)48×(12.D2i+3×D24+4×D38i+5×D416otherstermsignored)x4=(cosx+isinx)48(x44x3i34×12x2+12i×24x+516×24)=cosx+isinx48(x49x2+152+i×4x3i×12x)requiredanswerisrealpart=cosx48(x49x2+152)+sinx48×(1)(4x312x)plscheckmistakdifany

Commented by jagoll last updated on 20/Feb/20

thank sir

thanksir

Commented by TANMAY PANACEA last updated on 20/Feb/20

most welcome

mostwelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com