Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82286 by mathmax by abdo last updated on 19/Feb/20

1) find a and b wich verify  ∫_0 ^π (at^2  +bt)cos(nx) =(1/n^2 )  2) find the value of Σ_(n=1) ^∞  (1/n^2 )

$$\left.\mathrm{1}\right)\:{find}\:{a}\:{and}\:{b}\:{wich}\:{verify}\:\:\int_{\mathrm{0}} ^{\pi} \left({at}^{\mathrm{2}} \:+{bt}\right){cos}\left({nx}\right)\:=\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\left.\mathrm{2}\right)\:{find}\:{the}\:{value}\:{of}\:\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$

Commented by john santu last updated on 22/Feb/20

(2)sin x = x−(x^3 /(3!)) + (x^5 /(5!)) −...  (3) ((sin x)/x) = Π_(n = 1) ^∞  (1−(x^2 /(n^2 π^2 )))= (1−(x^2 /π^2 ))(1−(x^2 /(4π^2 )))...  (2) = (3)   1−(x^2 /(3!)) + (x^4 /(5!)) − (x^6 /(7!))+... = (1−(x^2 /π^2 ))(1−(x^2 /(4π^2 )))...  coefficient term of x^2  must be same  −(1/(3!)) = −((1/π^2 )+(1/(4π^2 ))+(1/(9π^2 ))+...)  −(1/6) = −(1/π^2 ) Σ_(n = 1) ^∞   (1/n^2 )  therefore Σ_(n = 1) ^∞  (1/n^2 ) = (π^2 /6) .

$$\left(\mathrm{2}\right)\mathrm{sin}\:{x}\:=\:{x}−\frac{{x}^{\mathrm{3}} }{\mathrm{3}!}\:+\:\frac{{x}^{\mathrm{5}} }{\mathrm{5}!}\:−... \\ $$$$\left(\mathrm{3}\right)\:\frac{\mathrm{sin}\:{x}}{{x}}\:=\:\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\prod}}\:\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{{n}^{\mathrm{2}} \pi^{\mathrm{2}} }\right)=\:\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\pi^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}\pi^{\mathrm{2}} }\right)... \\ $$$$\left(\mathrm{2}\right)\:=\:\left(\mathrm{3}\right)\: \\ $$$$\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{3}!}\:+\:\frac{{x}^{\mathrm{4}} }{\mathrm{5}!}\:−\:\frac{{x}^{\mathrm{6}} }{\mathrm{7}!}+...\:=\:\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\pi^{\mathrm{2}} }\right)\left(\mathrm{1}−\frac{{x}^{\mathrm{2}} }{\mathrm{4}\pi^{\mathrm{2}} }\right)... \\ $$$${coefficient}\:{term}\:{of}\:{x}^{\mathrm{2}} \:{must}\:{be}\:{same} \\ $$$$−\frac{\mathrm{1}}{\mathrm{3}!}\:=\:−\left(\frac{\mathrm{1}}{\pi^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{4}\pi^{\mathrm{2}} }+\frac{\mathrm{1}}{\mathrm{9}\pi^{\mathrm{2}} }+...\right) \\ $$$$−\frac{\mathrm{1}}{\mathrm{6}}\:=\:−\frac{\mathrm{1}}{\pi^{\mathrm{2}} }\:\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$${therefore}\:\underset{{n}\:=\:\mathrm{1}} {\overset{\infty} {\sum}}\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} }\:=\:\frac{\pi^{\mathrm{2}} }{\mathrm{6}}\:.\: \\ $$

Commented by mathmax by abdo last updated on 20/Feb/20

sir john can you prove the second line its not clear...

$${sir}\:{john}\:{can}\:{you}\:{prove}\:{the}\:{second}\:{line}\:{its}\:{not}\:{clear}... \\ $$

Commented by mind is power last updated on 20/Feb/20

nice But i think 1&2 are related quation

$${nice}\:{But}\:{i}\:{think}\:\mathrm{1\&2}\:{are}\:{related}\:{quation} \\ $$

Answered by mind is power last updated on 20/Feb/20

∫_0 ^π t^2 cos(nt)dt  =−2∫_0 ^π ((tsin(nt))/n)dt  =(2/n)[((tcos(nt))/n)]_0 ^π =((2π(−1)^n )/n^2 )  ∫tcos(nt)dt=−∫_0 ^π ((sin(nt))/n)dt=(([cos(nt)]_0 ^π )/n^2 )=(((−1)^n −1)/n^2 )  ⇒∫_0 ^π (at^2 +bt)cos(nt)dt=(((−1)^n )/n^2 )(2πa+b)−(b/n^2 )=(1/n^2 )  ⇒ { ((−b=1)),((2πa+b=0)) :}⇒b=−1,a=(1/(2π))  2)  let f(t)=(t^2 /(2π))−t  2π periodic  odd f(x)=f(−x)paire  f∈C_0 ]−π,π[  serie of fourier of f is  S_n (f)=a_0 +Σ_(n≥1) a_n (f)cos(nx)  a_0 =(1/(2π))∫_(−π) ^π f(x)dx=(1/π)∫_0 ^π ((x^2 /(2π))−x)dx  =(π/6)−(π/2)=−(π/3)  a_k =(1/π)∫_(−π) ^π f(x)cos(kx)dx=(2/π)∫_0 ^π f(x)cos(kx)dx by one  a_k =(2/π)(1/k^2 )  S_n (f)(x)=−(π/3)+Σ_(n≥1) ((2cos(kx))/k^2 )  by direchlet f(0)=S_n (f)(0)⇒  0=−(π/3)+(2/π)Σ_(k≥1) ((cos(k.0))/k^2 )⇒  (π/3)=(2/π)Σ_(k≥1) (1/k^2 )⇒Σ_(k≥1) (1/k^2 )=(π^2 /6)

$$\int_{\mathrm{0}} ^{\pi} {t}^{\mathrm{2}} {cos}\left({nt}\right){dt} \\ $$$$=−\mathrm{2}\int_{\mathrm{0}} ^{\pi} \frac{{tsin}\left({nt}\right)}{{n}}{dt} \\ $$$$=\frac{\mathrm{2}}{{n}}\left[\frac{{tcos}\left({nt}\right)}{{n}}\right]_{\mathrm{0}} ^{\pi} =\frac{\mathrm{2}\pi\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} } \\ $$$$\int{tcos}\left({nt}\right){dt}=−\int_{\mathrm{0}} ^{\pi} \frac{{sin}\left({nt}\right)}{{n}}{dt}=\frac{\left[{cos}\left({nt}\right)\right]_{\mathrm{0}} ^{\pi} }{{n}^{\mathrm{2}} }=\frac{\left(−\mathrm{1}\right)^{{n}} −\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\int_{\mathrm{0}} ^{\pi} \left({at}^{\mathrm{2}} +{bt}\right){cos}\left({nt}\right){dt}=\frac{\left(−\mathrm{1}\right)^{{n}} }{{n}^{\mathrm{2}} }\left(\mathrm{2}\pi{a}+{b}\right)−\frac{{b}}{{n}^{\mathrm{2}} }=\frac{\mathrm{1}}{{n}^{\mathrm{2}} } \\ $$$$\Rightarrow\begin{cases}{−{b}=\mathrm{1}}\\{\mathrm{2}\pi{a}+{b}=\mathrm{0}}\end{cases}\Rightarrow{b}=−\mathrm{1},{a}=\frac{\mathrm{1}}{\mathrm{2}\pi} \\ $$$$\left.\mathrm{2}\right) \\ $$$${let}\:{f}\left({t}\right)=\frac{{t}^{\mathrm{2}} }{\mathrm{2}\pi}−{t}\:\:\mathrm{2}\pi\:{periodic}\:\:{odd}\:{f}\left({x}\right)={f}\left(−{x}\right){paire} \\ $$$$\left.{f}\in{C}_{\mathrm{0}} \right]−\pi,\pi\left[\right. \\ $$$${serie}\:{of}\:{fourier}\:{of}\:{f}\:{is} \\ $$$${S}_{{n}} \left({f}\right)={a}_{\mathrm{0}} +\underset{{n}\geqslant\mathrm{1}} {\sum}{a}_{{n}} \left({f}\right){cos}\left({nx}\right) \\ $$$${a}_{\mathrm{0}} =\frac{\mathrm{1}}{\mathrm{2}\pi}\int_{−\pi} ^{\pi} {f}\left({x}\right){dx}=\frac{\mathrm{1}}{\pi}\int_{\mathrm{0}} ^{\pi} \left(\frac{{x}^{\mathrm{2}} }{\mathrm{2}\pi}−{x}\right){dx} \\ $$$$=\frac{\pi}{\mathrm{6}}−\frac{\pi}{\mathrm{2}}=−\frac{\pi}{\mathrm{3}} \\ $$$${a}_{{k}} =\frac{\mathrm{1}}{\pi}\int_{−\pi} ^{\pi} {f}\left({x}\right){cos}\left({kx}\right){dx}=\frac{\mathrm{2}}{\pi}\int_{\mathrm{0}} ^{\pi} {f}\left({x}\right){cos}\left({kx}\right){dx}\:{by}\:{one} \\ $$$${a}_{{k}} =\frac{\mathrm{2}}{\pi}\frac{\mathrm{1}}{{k}^{\mathrm{2}} } \\ $$$${S}_{{n}} \left({f}\right)\left({x}\right)=−\frac{\pi}{\mathrm{3}}+\underset{{n}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{2}{cos}\left({kx}\right)}{{k}^{\mathrm{2}} } \\ $$$${by}\:{direchlet}\:{f}\left(\mathrm{0}\right)={S}_{{n}} \left({f}\right)\left(\mathrm{0}\right)\Rightarrow \\ $$$$\mathrm{0}=−\frac{\pi}{\mathrm{3}}+\frac{\mathrm{2}}{\pi}\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{{cos}\left({k}.\mathrm{0}\right)}{{k}^{\mathrm{2}} }\Rightarrow \\ $$$$\frac{\pi}{\mathrm{3}}=\frac{\mathrm{2}}{\pi}\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }\Rightarrow\underset{{k}\geqslant\mathrm{1}} {\sum}\frac{\mathrm{1}}{{k}^{\mathrm{2}} }=\frac{\pi^{\mathrm{2}} }{\mathrm{6}} \\ $$$$ \\ $$

Commented by mathmax by abdo last updated on 20/Feb/20

thanks sir.

$${thanks}\:{sir}. \\ $$

Commented by mind is power last updated on 21/Feb/20

withe pleasur

$${withe}\:{pleasur} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com