Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 82289 by mathmax by abdo last updated on 19/Feb/20

calculate Σ_(n=6) ^∞   (1/(n^2 −25))

$${calculate}\:\sum_{{n}=\mathrm{6}} ^{\infty} \:\:\frac{\mathrm{1}}{{n}^{\mathrm{2}} −\mathrm{25}} \\ $$

Commented by mathmax by abdo last updated on 20/Feb/20

let S_n =Σ_(k=6) ^n  (1/(k^2 −25)) ⇒S_n =(1/(10))Σ_(k=6) ^n {(1/(k−5))−(1/(k+5))} ⇒  10 S_n =Σ_(k=6) ^n  (1/(k−5))−Σ_(k=6) ^n  (1/(k+5)) we have   Σ_(k=6) ^n  (1/(k−5)) =_(k−5=p)  Σ_(p=1) ^(n−5)  (1/p) =H_(n−5)   Σ_(k=6) ^n  (1/(k+5)) =_(k+5=p)   Σ_(p=11) ^(n+5)  (1/p) =Σ_(p=1) ^(n+5) (1/p)−(1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)  +(1/7)+(1/8) +(1/9) +(1/(10)))=H_(n+5) −{(3/2)+(7/(12)) +((11)/(30)) +((15)/(56)) +((19)/(99))} ⇒  10S_n =H_(n−5) −H_(n+5) +(3/2) +(7/(12)) +((11)/(30)) +((15)/(56)) +((19)/(99))  ∼ln(n−5)+γ +o((1/(n−5)))−γ−ln(n+5)−γ−o((1/(n+5)))  +(3/2) +(7/(12)) +((11)/(30)) +((15)/(56)) +((19)/(99)) ⇒10S_n =ln(((n−5)/(n+5)))+(3/2)+(7/(12))+((11)/(30)) +((15)/(56))+((19)/(99))  ⇒lim_(n→+∞)  S_n =(1/(10))((3/2) +(7/(12)) +((11)/(30))+((15)/(56))+((19)/(99)))

$${let}\:{S}_{{n}} =\sum_{{k}=\mathrm{6}} ^{{n}} \:\frac{\mathrm{1}}{{k}^{\mathrm{2}} −\mathrm{25}}\:\Rightarrow{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{10}}\sum_{{k}=\mathrm{6}} ^{{n}} \left\{\frac{\mathrm{1}}{{k}−\mathrm{5}}−\frac{\mathrm{1}}{{k}+\mathrm{5}}\right\}\:\Rightarrow \\ $$$$\mathrm{10}\:{S}_{{n}} =\sum_{{k}=\mathrm{6}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{5}}−\sum_{{k}=\mathrm{6}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{5}}\:{we}\:{have}\: \\ $$$$\sum_{{k}=\mathrm{6}} ^{{n}} \:\frac{\mathrm{1}}{{k}−\mathrm{5}}\:=_{{k}−\mathrm{5}={p}} \:\sum_{{p}=\mathrm{1}} ^{{n}−\mathrm{5}} \:\frac{\mathrm{1}}{{p}}\:={H}_{{n}−\mathrm{5}} \\ $$$$\sum_{{k}=\mathrm{6}} ^{{n}} \:\frac{\mathrm{1}}{{k}+\mathrm{5}}\:=_{{k}+\mathrm{5}={p}} \:\:\sum_{{p}=\mathrm{11}} ^{{n}+\mathrm{5}} \:\frac{\mathrm{1}}{{p}}\:=\sum_{{p}=\mathrm{1}} ^{{n}+\mathrm{5}} \frac{\mathrm{1}}{{p}}−\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+\frac{\mathrm{1}}{\mathrm{4}}+\frac{\mathrm{1}}{\mathrm{5}}+\frac{\mathrm{1}}{\mathrm{6}}\right. \\ $$$$\left.+\frac{\mathrm{1}}{\mathrm{7}}+\frac{\mathrm{1}}{\mathrm{8}}\:+\frac{\mathrm{1}}{\mathrm{9}}\:+\frac{\mathrm{1}}{\mathrm{10}}\right)={H}_{{n}+\mathrm{5}} −\left\{\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{7}}{\mathrm{12}}\:+\frac{\mathrm{11}}{\mathrm{30}}\:+\frac{\mathrm{15}}{\mathrm{56}}\:+\frac{\mathrm{19}}{\mathrm{99}}\right\}\:\Rightarrow \\ $$$$\mathrm{10}{S}_{{n}} ={H}_{{n}−\mathrm{5}} −{H}_{{n}+\mathrm{5}} +\frac{\mathrm{3}}{\mathrm{2}}\:+\frac{\mathrm{7}}{\mathrm{12}}\:+\frac{\mathrm{11}}{\mathrm{30}}\:+\frac{\mathrm{15}}{\mathrm{56}}\:+\frac{\mathrm{19}}{\mathrm{99}} \\ $$$$\sim{ln}\left({n}−\mathrm{5}\right)+\gamma\:+{o}\left(\frac{\mathrm{1}}{{n}−\mathrm{5}}\right)−\gamma−{ln}\left({n}+\mathrm{5}\right)−\gamma−{o}\left(\frac{\mathrm{1}}{{n}+\mathrm{5}}\right) \\ $$$$+\frac{\mathrm{3}}{\mathrm{2}}\:+\frac{\mathrm{7}}{\mathrm{12}}\:+\frac{\mathrm{11}}{\mathrm{30}}\:+\frac{\mathrm{15}}{\mathrm{56}}\:+\frac{\mathrm{19}}{\mathrm{99}}\:\Rightarrow\mathrm{10}{S}_{{n}} ={ln}\left(\frac{{n}−\mathrm{5}}{{n}+\mathrm{5}}\right)+\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{7}}{\mathrm{12}}+\frac{\mathrm{11}}{\mathrm{30}}\:+\frac{\mathrm{15}}{\mathrm{56}}+\frac{\mathrm{19}}{\mathrm{99}} \\ $$$$\Rightarrow{lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{10}}\left(\frac{\mathrm{3}}{\mathrm{2}}\:+\frac{\mathrm{7}}{\mathrm{12}}\:+\frac{\mathrm{11}}{\mathrm{30}}+\frac{\mathrm{15}}{\mathrm{56}}+\frac{\mathrm{19}}{\mathrm{99}}\right) \\ $$$$ \\ $$

Commented by mr W last updated on 20/Feb/20

typo in  ((19)/(99)). should be ((19)/(90)).

$${typo}\:{in}\:\:\frac{\mathrm{19}}{\mathrm{99}}.\:{should}\:{be}\:\frac{\mathrm{19}}{\mathrm{90}}. \\ $$

Commented by mathmax by abdo last updated on 20/Feb/20

yes sir you are right thanks

$${yes}\:{sir}\:{you}\:{are}\:{right}\:{thanks} \\ $$

Commented by mathmax by abdo last updated on 20/Feb/20

forgive error of typo change 99 by 90 ⇒  lim_(n→+∞)  S_n =(1/(10))((3/2)+(7/(12)) +((11)/(30)) +((15)/(56)) +((19)/(90)))

$${forgive}\:{error}\:{of}\:{typo}\:{change}\:\mathrm{99}\:{by}\:\mathrm{90}\:\Rightarrow \\ $$$${lim}_{{n}\rightarrow+\infty} \:{S}_{{n}} =\frac{\mathrm{1}}{\mathrm{10}}\left(\frac{\mathrm{3}}{\mathrm{2}}+\frac{\mathrm{7}}{\mathrm{12}}\:+\frac{\mathrm{11}}{\mathrm{30}}\:+\frac{\mathrm{15}}{\mathrm{56}}\:+\frac{\mathrm{19}}{\mathrm{90}}\right) \\ $$

Answered by mr W last updated on 20/Feb/20

Σ_(n=6) ^∞ (1/(n^2 −25))  =(1/(10))Σ_(n=6) ^∞ ((1/(n−5))−(1/(n+5)))  =(1/(10)){Σ_(n=6) ^∞ (1/(n−5))−Σ_(n=6) ^∞ (1/(n+5))}  =(1/(10)){Σ_(n=1) ^∞ (1/n)−Σ_(n=10) ^∞ (1/(n+1))}  =(1/(10)){Σ_(n=1) ^∞ (1/n)−Σ_(n=1) ^∞ (1/(n+1))+Σ_(n=1) ^9 (1/(n+1))}  =(1/(10)){Σ_(n=1) ^∞ ((1/n)−(1/(n+1)))}+(1/(10))((1/2)+(1/3)+...+(1/(10)))  =(1/(10))(1)+(1/(10))((1/2)+(1/3)+...+(1/(10)))  =(1/(10))(1+(1/2)+(1/3)+...+(1/(10)))  =((7381)/(25200))≈0.2929

$$\underset{{n}=\mathrm{6}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}^{\mathrm{2}} −\mathrm{25}} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\underset{{n}=\mathrm{6}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}−\mathrm{5}}−\frac{\mathrm{1}}{{n}+\mathrm{5}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left\{\underset{{n}=\mathrm{6}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}−\mathrm{5}}−\underset{{n}=\mathrm{6}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{5}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left\{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}−\underset{{n}=\mathrm{10}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left\{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}}−\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}+\underset{{n}=\mathrm{1}} {\overset{\mathrm{9}} {\sum}}\frac{\mathrm{1}}{{n}+\mathrm{1}}\right\} \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left\{\underset{{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{1}}{{n}}−\frac{\mathrm{1}}{{n}+\mathrm{1}}\right)\right\}+\frac{\mathrm{1}}{\mathrm{10}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{10}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{1}\right)+\frac{\mathrm{1}}{\mathrm{10}}\left(\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{10}}\right) \\ $$$$=\frac{\mathrm{1}}{\mathrm{10}}\left(\mathrm{1}+\frac{\mathrm{1}}{\mathrm{2}}+\frac{\mathrm{1}}{\mathrm{3}}+...+\frac{\mathrm{1}}{\mathrm{10}}\right) \\ $$$$=\frac{\mathrm{7381}}{\mathrm{25200}}\approx\mathrm{0}.\mathrm{2929} \\ $$

Commented by mathmax by abdo last updated on 20/Feb/20

thank you sir mrw.

$${thank}\:{you}\:{sir}\:{mrw}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com