Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82330 by Power last updated on 20/Feb/20

Commented by mathmax by abdo last updated on 20/Feb/20

let I =∫x^2 (√(a^2 +x^2 ))dx  changement x=ash(t) give  I =∫ a^2 sh^2 (t)∣a∣ch(t)ach(t)dt =a^3 ∣a∣∫sh^2 (t)ch^2 (t)dt  =a^3 ∣a∣ ∫(  ((ch(2t)−1)/2))^2 ×(((1+ch(2t))/2))^2 dt  =((a^3 ∣a∣)/(16)) ∫(ch(2t)−1)(ch(2t)+1)dt  =((a^3 ∣a∣)/(16)) ∫(ch^2 (2t)−1)dt  =((a^3 ∣a∣)/(16)) ∫(((1+ch(4t))/2)−1)dt  =((a^3 ∣a∣)/(32))∫ (ch(4t)−1)dt  =((a^3 ∣a∣)/(32×4))sh(4t)−((a^3 ∣a∣)/(32))t +C  sh(4t) =((e^(4t) −e^(−4t) )/2)  and t=argsh((x/a)) =ln((x/a)+(√(1+(x^2 /a^2 )))) ⇒  sh(4t) =(1/2){((x/a)+(√(1+(x^2 /a^2 ))))^4 −((x/a)+(√(1+(x^2 /a^2 ))))^(−4) } ⇒  I =((a^3 ∣a∣)/(8×32)){ ((x/a)+(√(1+(x^2 /a^2 ))))^4 −((x/a)+(√(1+(x^2 /a^2 ))))^(−4) }  −((a^3 ∣a∣)/(32))ln((x/a)+(√(1+(x^2 /a^2 )))) +C .

letI=x2a2+x2dxchangementx=ash(t)giveI=a2sh2(t)ach(t)ach(t)dt=a3ash2(t)ch2(t)dt=a3a(ch(2t)12)2×(1+ch(2t)2)2dt=a3a16(ch(2t)1)(ch(2t)+1)dt=a3a16(ch2(2t)1)dt=a3a16(1+ch(4t)21)dt=a3a32(ch(4t)1)dt=a3a32×4sh(4t)a3a32t+Csh(4t)=e4te4t2andt=argsh(xa)=ln(xa+1+x2a2)sh(4t)=12{(xa+1+x2a2)4(xa+1+x2a2)4}I=a3a8×32{(xa+1+x2a2)4(xa+1+x2a2)4}a3a32ln(xa+1+x2a2)+C.

Commented by Power last updated on 20/Feb/20

sir  x=a tanu   solution

sirx=atanusolution

Commented by john santu last updated on 20/Feb/20

∫ x (x(√(a^2 +x^2 ))) dx = I  u = x ⇒du = dx  v = ∫ x(√(a^2 +x^2 )) dx = (1/2)∫ (√(a^2 +x^2 )) d(a^2 +x^2 )  = (1/3)(a^2 +x^2 )^(3/2)   I = (1/3)x(a^2 +x^2 )^(3/2) −∫ (a^2 +x^2 )^(3/2) dx  J = ∫ (a^2 +x^2 )^(3/2)  dx  let x = a tan θ ⇒dx = asec θ dθ  J = ∫a^2 sec^4 θ dθ   J = a^2 ∫ (1+tan^2 θ) d(tan θ)  J = a^2 (tan θ+(1/3)tan^3 θ)+c  J = a^2 ((x/a)+(x^3 /(3a^3 )))+c = ax + (1/3)(x^3 /a)+c  ∴ I −J = (1/3)(√((a^2 +x^2 )^3 )) − ax−(x^3 /(3a)) + c

x(xa2+x2)dx=Iu=xdu=dxv=xa2+x2dx=12a2+x2d(a2+x2)=13(a2+x2)32I=13x(a2+x2)32(a2+x2)32dxJ=(a2+x2)32dxletx=atanθdx=asecθdθJ=a2sec4θdθJ=a2(1+tan2θ)d(tanθ)J=a2(tanθ+13tan3θ)+cJ=a2(xa+x33a3)+c=ax+13x3a+cIJ=13(a2+x2)3axx33a+c

Commented by Power last updated on 20/Feb/20

thank you sir

thankyousir

Terms of Service

Privacy Policy

Contact: info@tinkutara.com