Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 82375 by M±th+et£s last updated on 20/Feb/20

if  x+y=8     ,,x,y∈R^+   prove that   (x+(1/y))^2 +(y+(1/x))^2 ≥((289)/8)

ifx+y=8,,x,yR+provethat(x+1y)2+(y+1x)22898

Answered by MJS last updated on 21/Feb/20

f(x)=(x+(1/(8−x)))^2 +(8−x+(1/x))^2   f(x)=((2(x^2 −8x−1)(x^2 −8x+32))/(x^2 (x−8)^2 ))  shift 4 to the left  x=t+4 ⇔ t=x−4  f(t)=((2(t^2 −17)^2 (t^2 +16))/((t−4)^2 (t+4)^2 ))  f(t) has double zeros at t=±(√(17)) which also           are minima           and a local minimum at t=0 with f(0)=((289)/8)  ⇒ f(x) has double zeros at x=4±(√(17)) which                  also are minima but 0<x<8 so they                  are outside the given interval                  and a local minimum at x=4 with f(4)=((289)/8)  what′s left to show is that f(x)≥((289)/8) at the  borders: but lim_(x→0) f(x)=lim_(x→8) f(x)=+∞ ⇒   ⇒ proven

f(x)=(x+18x)2+(8x+1x)2f(x)=2(x28x1)(x28x+32)x2(x8)2shift4totheleftx=t+4t=x4f(t)=2(t217)2(t2+16)(t4)2(t+4)2f(t)hasdoublezerosatt=±17whichalsoareminimaandalocalminimumatt=0withf(0)=2898f(x)hasdoublezerosatx=4±17whichalsoareminimabut0<x<8sotheyareoutsidethegivenintervalandalocalminimumatx=4withf(4)=2898whatslefttoshowisthatf(x)2898attheborders:butlimx0f(x)=limx8f(x)=+proven

Answered by mind is power last updated on 21/Feb/20

x^2 +y^2 +(1/y^2 )+(1/x^2 )+2(x/y)+2(y/x)  =(x^2 +y^2 )(1+(1/(x^2 y^2 ))+(2/(xy^ )))  ,x^2 +y^2 ≥(((x+y)^2 )/2)=((64)/2)=((256)/8)  AM GM⇒  xy≤(((x+y)^2 )/4)=16  ⇒(1/(xy))≥(1/(16))⇒  (1+(2/(xy))+(1/(x^2 y^2 )))≥1+(2/(16))+(1/(256))=((1+32+256)/(256))=((289)/(256))  (x^2 +y^2 )(1+(2/(xy))+(1/(x^2 y^2 )))≥((289)/(256)).((256)/8)=((289)/8)  ⇔(x+(1/y))^2 +(y+(1/x))^2 ≥((289)/8)

x2+y2+1y2+1x2+2xy+2yx=(x2+y2)(1+1x2y2+2xy),x2+y2(x+y)22=642=2568AMGMxy(x+y)24=161xy116(1+2xy+1x2y2)1+216+1256=1+32+256256=289256(x2+y2)(1+2xy+1x2y2)289256.2568=2898(x+1y)2+(y+1x)22898

Terms of Service

Privacy Policy

Contact: info@tinkutara.com