All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 82375 by M±th+et£s last updated on 20/Feb/20
ifx+y=8,,x,y∈R+provethat(x+1y)2+(y+1x)2⩾2898
Answered by MJS last updated on 21/Feb/20
f(x)=(x+18−x)2+(8−x+1x)2f(x)=2(x2−8x−1)(x2−8x+32)x2(x−8)2shift4totheleftx=t+4⇔t=x−4f(t)=2(t2−17)2(t2+16)(t−4)2(t+4)2f(t)hasdoublezerosatt=±17whichalsoareminimaandalocalminimumatt=0withf(0)=2898⇒f(x)hasdoublezerosatx=4±17whichalsoareminimabut0<x<8sotheyareoutsidethegivenintervalandalocalminimumatx=4withf(4)=2898what′slefttoshowisthatf(x)⩾2898attheborders:butlimx→0f(x)=limx→8f(x)=+∞⇒⇒proven
Answered by mind is power last updated on 21/Feb/20
x2+y2+1y2+1x2+2xy+2yx=(x2+y2)(1+1x2y2+2xy),x2+y2⩾(x+y)22=642=2568AMGM⇒xy⩽(x+y)24=16⇒1xy⩾116⇒(1+2xy+1x2y2)⩾1+216+1256=1+32+256256=289256(x2+y2)(1+2xy+1x2y2)⩾289256.2568=2898⇔(x+1y)2+(y+1x)2⩾2898
Terms of Service
Privacy Policy
Contact: info@tinkutara.com