Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 82390 by jagoll last updated on 21/Feb/20

(D^2 −1)^2 y = t^3   find solution

(D21)2y=t3findsolution

Answered by TANMAY PANACEA last updated on 21/Feb/20

y=e^(mt)   so     (dy/dt)=me^(mt)  and   (d^2 y/dt^2 )=m^2 e^(mt)   (m^2 −1)^2 =0  m=1,1,−1,−1  complementary function  y=Ae^t +Bte^t +Ce^(−t) +Fte^(−t)     particular intregal  now formula  (1+x)^(−2) =1−2x+3x^2 −4x^3 +...  y=(t^3 /((D^2 −1)^2 ))=(t^3 /((1−D^2 )^2 ))  y=(1−D^2 )^(−2) t^3   =(1+2D^2 +3D^4 +others terms ignored)t^3   =(t^3 +2×3×2t)   [(dt^3 /dt)=3t^2 →((d(3t^2 ))/dt)=6t]  =t^3 +12t  complete solution  y=Ae^t +Bte^t +Ce^(−t) +Fte^(−t) +t^3 +12t

y=emtsodydt=memtandd2ydt2=m2emt(m21)2=0m=1,1,1,1complementaryfunctiony=Aet+Btet+Cet+Ftetparticularintregalnowformula(1+x)2=12x+3x24x3+...y=t3(D21)2=t3(1D2)2y=(1D2)2t3=(1+2D2+3D4+otherstermsignored)t3=(t3+2×3×2t)[dt3dt=3t2d(3t2)dt=6t]=t3+12tcompletesolutiony=Aet+Btet+Cet+Ftet+t3+12t

Commented by jagoll last updated on 21/Feb/20

thank you sir

thankyousir

Commented by TANMAY PANACEA last updated on 21/Feb/20

most welcome

mostwelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com