Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82433 by mathmax by abdo last updated on 21/Feb/20

1)decompose inside C(x)and R(x) F=(1/((x^2 +x+1)^2 ))  2)calculate ∫_0 ^∞   (dx/((x^2 +x+1)^2 ))

1)decomposeinsideC(x)andR(x)F=1(x2+x+1)22)calculate0dx(x2+x+1)2

Commented by mathmax by abdo last updated on 24/Feb/20

x^2  +x+1 =0→Δ =1−4=−3 ⇒z_1 =((−1+i(√3))/2) =e^(i((2π)/3))   z_2 =e^(−((i2π)/3))  ⇒F =(1/((x−e^((i2π)/3) )^2 (x−e^(−((i2π)/3)) )^2 )) =(a/(x−e^((i2π)/3) ))+(b/((x−e^((i2π)/3) )^2 ))  +(c/((x−e^(−i((2π)/3)) ))) +(d/((x−e^(−i((2π)/3)) )^2 ))  b =(1/((2isin(((2π)/3)))^2 )) =−(1/(4i(((√3)/2))^2 )) =−(1/(3i))  d=(1/((2isin(((2π)/3)))^2 ))=−(1/(3i)) ⇒F(x)=(a/((x−e^((i2π)/3) )))−(1/(3i(x−e^((i2π)/3) )^2 ))  +(c/(x−e^(−((i2π)/3)) )) −(1/(3i(x−e^(−((i2π)/3)) )^2 ))  lim_(x→+∞) xF(x)=0 =a+c ⇒c=−a  F(0)=1 =−ae^(−((i2π)/3)) −(1/(3i))e^(−((i4π)/3)) +ae^((i2π)/3)  −(1/(3i))e^((i4π)/3)   =2ia sin(((2π)/3))−(1/(3i))(2cos(((4π)/3)))=2ia ×((√3)/2)−(2/(3i))(−(1/2))  =ai(√3)+(1/(3i)) =ai(√3)−(i/3)=1 ⇒ai(√3)=1+(i/3) ⇒  a=(1/(i(√3)))(1+(i/3))=(1/(i(√3)))+(1/(3(√3))) =(1/(3(√3)))−(i/(√3)) and c=−(1/(3(√3)))+(i/(√3)) ⇒  F(x)=((1/(3(√3)))−(i/(√3)))×(1/(x−e^((i2π)/3) )) +(i/(3(x−e^((i2π)/3) )^2 ))−((1/(3(√3)))−(i/(√3)))×(1/(x−e^(−((i2π)/3)) ))  +(i/(3(x−e^(−i((2π)/3)) )^2 ))

x2+x+1=0Δ=14=3z1=1+i32=ei2π3z2=ei2π3F=1(xei2π3)2(xei2π3)2=axei2π3+b(xei2π3)2+c(xei2π3)+d(xei2π3)2b=1(2isin(2π3))2=14i(32)2=13id=1(2isin(2π3))2=13iF(x)=a(xei2π3)13i(xei2π3)2+cxei2π313i(xei2π3)2limx+xF(x)=0=a+cc=aF(0)=1=aei2π313iei4π3+aei2π313iei4π3=2iasin(2π3)13i(2cos(4π3))=2ia×3223i(12)=ai3+13i=ai3i3=1ai3=1+i3a=1i3(1+i3)=1i3+133=133i3andc=133+i3F(x)=(133i3)×1xei2π3+i3(xei2π3)2(133i3)×1xei2π3+i3(xei2π3)2

Terms of Service

Privacy Policy

Contact: info@tinkutara.com