Question and Answers Forum

All Questions      Topic List

Differentiation Questions

Previous in All Question      Next in All Question      

Previous in Differentiation      Next in Differentiation      

Question Number 8244 by lepan last updated on 04/Oct/16

Show that the curve y=ln(((5−7x)/(8+x))) has  no stationary point for all real values  of x.

$${Show}\:{that}\:{the}\:{curve}\:{y}={ln}\left(\frac{\mathrm{5}−\mathrm{7}{x}}{\mathrm{8}+{x}}\right)\:{has} \\ $$$${no}\:{stationary}\:{point}\:{for}\:{all}\:{real}\:{values} \\ $$$${of}\:{x}. \\ $$

Answered by 123456 last updated on 06/Oct/16

y=ln ((5−7x)/(8+x))  (dy/dx)=(d/dx)ln ((5−7x)/(8+x))     u=((5−7x)/(8+x))  =((dln u)/dx)  =((dln u)/du)∙(du/dx)  =(1/u)∙(du/dx)  =((8+x)/(5−7x))∙(d/dx) ((5−7x)/(8+x))          { ((v=5−7x)),((w=8+x)) :}  =((8+x)/(5−7x))∙(d/dx) (v/w)                   (d/dx) (u/v)=(d/dx)(u∙(1/v))=(du/dx)∙(1/v)+u∙(d/dx) (1/v)=(du/dx)∙(1/v)−u∙((dv/x)/v^2 )=((u′v−uv′)/v^2 )  =((8+x)/(5−7x))∙(((dv/dx)∙w−v∙(dw/dx))/w^2 )  =((8+x)/(5−7x))∙((((d(5−7x))/dx)∙(8+x)−(5−7x)∙((d(8+x))/dx))/((8+x)^2 ))  =(1/(5−7x))∙((−7∙(8+x)−(5−7x)∙1)/(8+x))  =((−7∙8−7x−5+7x)/((5−7x)(8+x)))  =−((61)/((5−7x)(8+x)))

$${y}=\mathrm{ln}\:\frac{\mathrm{5}−\mathrm{7}{x}}{\mathrm{8}+{x}} \\ $$$$\frac{{dy}}{{dx}}=\frac{{d}}{{dx}}\mathrm{ln}\:\frac{\mathrm{5}−\mathrm{7}{x}}{\mathrm{8}+{x}}\:\:\:\:\:{u}=\frac{\mathrm{5}−\mathrm{7}{x}}{\mathrm{8}+{x}} \\ $$$$=\frac{{d}\mathrm{ln}\:{u}}{{dx}} \\ $$$$=\frac{{d}\mathrm{ln}\:{u}}{{du}}\centerdot\frac{{du}}{{dx}} \\ $$$$=\frac{\mathrm{1}}{{u}}\centerdot\frac{{du}}{{dx}} \\ $$$$=\frac{\mathrm{8}+{x}}{\mathrm{5}−\mathrm{7}{x}}\centerdot\frac{{d}}{{dx}}\:\frac{\mathrm{5}−\mathrm{7}{x}}{\mathrm{8}+{x}}\:\:\:\:\:\:\:\:\:\begin{cases}{{v}=\mathrm{5}−\mathrm{7}{x}}\\{{w}=\mathrm{8}+{x}}\end{cases} \\ $$$$=\frac{\mathrm{8}+{x}}{\mathrm{5}−\mathrm{7}{x}}\centerdot\frac{{d}}{{dx}}\:\frac{{v}}{{w}}\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\:\frac{{d}}{{dx}}\:\frac{{u}}{{v}}=\frac{{d}}{{dx}}\left({u}\centerdot\frac{\mathrm{1}}{{v}}\right)=\frac{{du}}{{dx}}\centerdot\frac{\mathrm{1}}{{v}}+{u}\centerdot\frac{{d}}{{dx}}\:\frac{\mathrm{1}}{{v}}=\frac{{du}}{{dx}}\centerdot\frac{\mathrm{1}}{{v}}−{u}\centerdot\frac{{dv}/{x}}{{v}^{\mathrm{2}} }=\frac{{u}'{v}−{uv}'}{{v}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{8}+{x}}{\mathrm{5}−\mathrm{7}{x}}\centerdot\frac{\frac{{dv}}{{dx}}\centerdot{w}−{v}\centerdot\frac{{dw}}{{dx}}}{{w}^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{8}+{x}}{\mathrm{5}−\mathrm{7}{x}}\centerdot\frac{\frac{{d}\left(\mathrm{5}−\mathrm{7}{x}\right)}{{dx}}\centerdot\left(\mathrm{8}+{x}\right)−\left(\mathrm{5}−\mathrm{7}{x}\right)\centerdot\frac{{d}\left(\mathrm{8}+{x}\right)}{{dx}}}{\left(\mathrm{8}+{x}\right)^{\mathrm{2}} } \\ $$$$=\frac{\mathrm{1}}{\mathrm{5}−\mathrm{7}{x}}\centerdot\frac{−\mathrm{7}\centerdot\left(\mathrm{8}+{x}\right)−\left(\mathrm{5}−\mathrm{7}{x}\right)\centerdot\mathrm{1}}{\mathrm{8}+{x}} \\ $$$$=\frac{−\mathrm{7}\centerdot\mathrm{8}−\mathrm{7}{x}−\mathrm{5}+\mathrm{7}{x}}{\left(\mathrm{5}−\mathrm{7}{x}\right)\left(\mathrm{8}+{x}\right)} \\ $$$$=−\frac{\mathrm{61}}{\left(\mathrm{5}−\mathrm{7}{x}\right)\left(\mathrm{8}+{x}\right)} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com