Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 82445 by mathmax by abdo last updated on 21/Feb/20

calculate Σ_(n=2) ^∞  ((ξ(n)−1)/n)  with ξ(x) =Σ_(n=1) ^∞  (1/n^x )   (x>1)

$${calculate}\:\sum_{{n}=\mathrm{2}} ^{\infty} \:\frac{\xi\left({n}\right)−\mathrm{1}}{{n}} \\ $$ $${with}\:\xi\left({x}\right)\:=\sum_{{n}=\mathrm{1}} ^{\infty} \:\frac{\mathrm{1}}{{n}^{{x}} }\:\:\:\left({x}>\mathrm{1}\right) \\ $$

Answered by mind is power last updated on 21/Feb/20

=Σ_(n≥2) (1/n).Σ_(m≥2) (1/m^n )=Σ_(m≥2) .Σ_(n≥2) (1/n).((1/m))^n =Σ_(m≥2) .[−ln(1−(1/m))−(1/m)]  =Σ_(m≥2) [−ln(m−1)+ln(m)−(1/m)]  =lim_(x→∞) .Σ_(m=2) ^x −ln(m−1)+ln(m)−(1/m)]  =lim_(x→∞)  ln(x)−Σ_(m=2) ^x (1/m)  =−lim_(x→∞) {Σ_(m=2) ^x (1/m)−ln(x)}  =−lim_(x→∞) {Σ_(m=1) ^x (1/m)−ln(x)−1}=−{γ−1}=1−γ   γ Euler mechorini constent

$$=\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}}.\underset{{m}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{m}^{{n}} }=\underset{{m}\geqslant\mathrm{2}} {\sum}.\underset{{n}\geqslant\mathrm{2}} {\sum}\frac{\mathrm{1}}{{n}}.\left(\frac{\mathrm{1}}{{m}}\right)^{{n}} =\underset{{m}\geqslant\mathrm{2}} {\sum}.\left[−{ln}\left(\mathrm{1}−\frac{\mathrm{1}}{{m}}\right)−\frac{\mathrm{1}}{{m}}\right] \\ $$ $$=\underset{{m}\geqslant\mathrm{2}} {\sum}\left[−{ln}\left({m}−\mathrm{1}\right)+{ln}\left({m}\right)−\frac{\mathrm{1}}{{m}}\right] \\ $$ $$\left.=\underset{{x}\rightarrow\infty} {\mathrm{lim}}.\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}−{ln}\left({m}−\mathrm{1}\right)+{ln}\left({m}\right)−\frac{\mathrm{1}}{{m}}\right] \\ $$ $$=\underset{{x}\rightarrow\infty} {\mathrm{lim}}\:{ln}\left({x}\right)−\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{m}} \\ $$ $$=−\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{\underset{{m}=\mathrm{2}} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{m}}−{ln}\left({x}\right)\right\} \\ $$ $$=−\underset{{x}\rightarrow\infty} {\mathrm{lim}}\left\{\underset{{m}=\mathrm{1}} {\overset{{x}} {\sum}}\frac{\mathrm{1}}{{m}}−{ln}\left({x}\right)−\mathrm{1}\right\}=−\left\{\gamma−\mathrm{1}\right\}=\mathrm{1}−\gamma\: \\ $$ $$\gamma\:{Euler}\:{mechorini}\:{constent} \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com