Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 8252 by 8168 last updated on 04/Oct/16

Answered by Yozzias last updated on 04/Oct/16

6+4+(8/3)+((16)/9)+...  =6+((2^2 /3^0 )+(2^3 /3^1 )+(2^4 /3^2 )+...+(2^(n+1) /3^(n−1) )+...)  =6+Σ_(n=1) ^∞ (2^(n+1) /3^(n−1) )  =6+(2/3^(−1) )Σ_(n=1) ^∞ ((2/3))^n   =6+6×((2/3)/(1−(2/3)))  =6+6×((2/3)/(1/3))  6+4+(8/3)+((16)/9)+...=18  The sum is convergent and hence  bounded and monotone.  For s(n)=6+6Σ_(r=1) ^n ((2/3))^r   ⇒s(n+1)−s(n)=6((2/3))^(n+1) >0  ⇒s(n+1)>s(n)⇒s(n) is an increasing  sequence of partial sums.  Since s(n) is increasing and lim_(n→∞) s(n)=18  then s(n) is bounded above and  s(n)≤18 ∀n∈N.

$$\mathrm{6}+\mathrm{4}+\frac{\mathrm{8}}{\mathrm{3}}+\frac{\mathrm{16}}{\mathrm{9}}+... \\ $$$$=\mathrm{6}+\left(\frac{\mathrm{2}^{\mathrm{2}} }{\mathrm{3}^{\mathrm{0}} }+\frac{\mathrm{2}^{\mathrm{3}} }{\mathrm{3}^{\mathrm{1}} }+\frac{\mathrm{2}^{\mathrm{4}} }{\mathrm{3}^{\mathrm{2}} }+...+\frac{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }{\mathrm{3}^{\mathrm{n}−\mathrm{1}} }+...\right) \\ $$$$=\mathrm{6}+\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\frac{\mathrm{2}^{\mathrm{n}+\mathrm{1}} }{\mathrm{3}^{\mathrm{n}−\mathrm{1}} } \\ $$$$=\mathrm{6}+\frac{\mathrm{2}}{\mathrm{3}^{−\mathrm{1}} }\underset{\mathrm{n}=\mathrm{1}} {\overset{\infty} {\sum}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{n}} \\ $$$$=\mathrm{6}+\mathrm{6}×\frac{\mathrm{2}/\mathrm{3}}{\mathrm{1}−\frac{\mathrm{2}}{\mathrm{3}}} \\ $$$$=\mathrm{6}+\mathrm{6}×\frac{\mathrm{2}/\mathrm{3}}{\mathrm{1}/\mathrm{3}} \\ $$$$\mathrm{6}+\mathrm{4}+\frac{\mathrm{8}}{\mathrm{3}}+\frac{\mathrm{16}}{\mathrm{9}}+...=\mathrm{18} \\ $$$$\mathrm{The}\:\mathrm{sum}\:\mathrm{is}\:\mathrm{convergent}\:\mathrm{and}\:\mathrm{hence} \\ $$$$\mathrm{bounded}\:\mathrm{and}\:\mathrm{monotone}. \\ $$$$\mathrm{For}\:\mathrm{s}\left(\mathrm{n}\right)=\mathrm{6}+\mathrm{6}\underset{\mathrm{r}=\mathrm{1}} {\overset{\mathrm{n}} {\sum}}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{r}} \\ $$$$\Rightarrow\mathrm{s}\left(\mathrm{n}+\mathrm{1}\right)−\mathrm{s}\left(\mathrm{n}\right)=\mathrm{6}\left(\frac{\mathrm{2}}{\mathrm{3}}\right)^{\mathrm{n}+\mathrm{1}} >\mathrm{0} \\ $$$$\Rightarrow\mathrm{s}\left(\mathrm{n}+\mathrm{1}\right)>\mathrm{s}\left(\mathrm{n}\right)\Rightarrow\mathrm{s}\left(\mathrm{n}\right)\:\mathrm{is}\:\mathrm{an}\:\mathrm{increasing} \\ $$$$\mathrm{sequence}\:\mathrm{of}\:\mathrm{partial}\:\mathrm{sums}. \\ $$$$\mathrm{Since}\:\mathrm{s}\left(\mathrm{n}\right)\:\mathrm{is}\:\mathrm{increasing}\:\mathrm{and}\:\underset{\mathrm{n}\rightarrow\infty} {\mathrm{lim}s}\left(\mathrm{n}\right)=\mathrm{18} \\ $$$$\mathrm{then}\:\mathrm{s}\left(\mathrm{n}\right)\:\mathrm{is}\:\mathrm{bounded}\:\mathrm{above}\:\mathrm{and} \\ $$$$\mathrm{s}\left(\mathrm{n}\right)\leqslant\mathrm{18}\:\forall\mathrm{n}\in\mathbb{N}. \\ $$$$ \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com