All Questions Topic List
Arithmetic Questions
Previous in All Question Next in All Question
Previous in Arithmetic Next in Arithmetic
Question Number 82520 by peter frank last updated on 22/Feb/20
Commented by mathmax by abdo last updated on 22/Feb/20
letSn=∑k=0n2kcos(2kθ)⇒Sn=Re(∑k=0n2kei2kθ)=Re(∑k=0n(2ei2θ)k)butwehave∑k=0n(2e2iθ)k=1−(2e2iθ)n+11−2e2iθ=1−2n+1e2(n+1)iθ1−2cos(2θ)−2isin(2θ)=(1−2cos(2θ)+2isin(2θ))(1−2n+1e2(n+1)iθ)(1−2cos(2θ))2+4sin2(2θ)=(1−2cos(2θ)+2isin(2θ)){1−2n+1cos2(n+1)θ−2n+1isin2(n+1)θ}(1−2cos(2θ))2+4sin2(2θ)=(1−2cos(2θ))(1−2n+1cos(2(n+1)θ)−i(1−2cos(2θ))2n+1sin2(n+1)θ+2isin(2θ)(1−2n+1cos2(n+1)θ)+2n+2sin(2θ)sin2(n+1)θ(1−2cos(2θ))2+4sin2(2θ)⇒Sn=(1−2cos(2θ))(1−2n+1cos(2(n+1)θ)+2n+2sin(2θ)sin2(n+1)θ5−4cos(2θ)
Answered by mr W last updated on 22/Feb/20
z=2(cosθ+isinθ)=2eiθzk=2k(coskθ+isinkθ)=(2eiθ)kz0+z1+z2+...+zn=∑nk=0(2eiθ)k←sumofGP∑nk=02kcos(kθ)+i∑nk=02ksin(kθ)=(2eiθ)n+1−12eiθ−1∑nk=02kcos(kθ)+i∑nk=02ksin(kθ)=2n+1ei(n+1)θ−12eiθ−1∑nk=02kcos(kθ)+i∑nk=02ksin(kθ)=2n+1[cos(n+1)θ+isin(n+1)θ]−12(cosθ+isinθ)−1∑nk=02kcos(kθ)+i∑nk=02ksin(kθ)={[2n+1cos(n+1)θ−1]+i[2n+1sin(n+1)θ]}[(2cosθ−1)−isinθ][(2cosθ−1)+isinθ][(2cosθ−1)−isinθ]∑nk=02kcos(kθ)+i∑nk=02ksin(kθ)={[2n+1cos(n+1)θ−1](2cosθ−1)+2n+1sin(n+1)θsinθ}+i{[2n+1sin(n+1)θ](2cosθ−1)−[2n+1cos(n+1)θ−1]sinθ}(2cosθ−1)2+sin2θ⇒∑nk=02kcos(kθ)=[2n+1cos(n+1)θ−1](2cosθ−1)+2n+1sinθsin(n+1)θ(2cosθ−1)2+sin2θ⇒∑nk=02ksin(kθ)=2n+1(2cosθ−1)sin(n+1)θ−[2n+1cos(n+1)θ−1]sinθ(2cosθ−1)2+sin2θ
Commented by peter frank last updated on 22/Feb/20
thankyouverymuch
Terms of Service
Privacy Policy
Contact: info@tinkutara.com