Question and Answers Forum

All Questions      Topic List

Arithmetic Questions

Previous in All Question      Next in All Question      

Previous in Arithmetic      Next in Arithmetic      

Question Number 82520 by peter frank last updated on 22/Feb/20

Commented by mathmax by abdo last updated on 22/Feb/20

let S_n =Σ_(k=0) ^n  2^k  cos(2kθ) ⇒S_n =Re(Σ_(k=0) ^n  2^k  e^(i2kθ) )  =Re(Σ_(k=0) ^n (2 e^(i2θ) )^k )  but we have  Σ_(k=0) ^n (2e^(2iθ) )^k  =((1−(2e^(2iθ) )^(n+1) )/(1−2e^(2iθ) )) =((1−2^(n+1)  e^(2(n+1)iθ) )/(1−2cos(2θ)−2isin(2θ)))  =(((1−2cos(2θ)+2isin(2θ))(1−2^(n+1) e^(2(n+1)iθ) ))/((1−2cos(2θ))^2  +4sin^2 (2θ)))  =(((1−2cos(2θ)+2isin(2θ)){1−2^(n+1) cos2(n+1)θ−2^(n+1) isin2(n+1)θ})/((1−2cos(2θ))^2  +4sin^2 (2θ)))  =(((1−2cos(2θ))(1−2^(n+1) cos(2(n+1)θ)−i(1−2cos(2θ))2^(n+1) sin2(n+1)θ+2isin(2θ)(1−2^(n+1) cos2(n+1)θ)+2^(n+2) sin(2θ)sin2(n+1)θ)/((1−2cos(2θ))^2  +4sin^2 (2θ)))  ⇒S_n =(((1−2cos(2θ))(1−2^(n+1) cos(2(n+1)θ)+2^(n+2) sin(2θ)sin2(n+1)θ)/(5−4cos(2θ)))

letSn=k=0n2kcos(2kθ)Sn=Re(k=0n2kei2kθ)=Re(k=0n(2ei2θ)k)butwehavek=0n(2e2iθ)k=1(2e2iθ)n+112e2iθ=12n+1e2(n+1)iθ12cos(2θ)2isin(2θ)=(12cos(2θ)+2isin(2θ))(12n+1e2(n+1)iθ)(12cos(2θ))2+4sin2(2θ)=(12cos(2θ)+2isin(2θ)){12n+1cos2(n+1)θ2n+1isin2(n+1)θ}(12cos(2θ))2+4sin2(2θ)=(12cos(2θ))(12n+1cos(2(n+1)θ)i(12cos(2θ))2n+1sin2(n+1)θ+2isin(2θ)(12n+1cos2(n+1)θ)+2n+2sin(2θ)sin2(n+1)θ(12cos(2θ))2+4sin2(2θ)Sn=(12cos(2θ))(12n+1cos(2(n+1)θ)+2n+2sin(2θ)sin2(n+1)θ54cos(2θ)

Answered by mr W last updated on 22/Feb/20

z=2(cos θ+i sin θ)=2e^(iθ)   z^k =2^k (cos kθ+i sin kθ)=(2e^(iθ) )^k   z^0 +z^1 +z^2 +...+z^n =Σ_(k=0) ^n (2e^(iθ) )^k  ← sum of GP  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=(((2e^(iθ) )^(n+1) −1)/(2e^(iθ) −1))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=((2^(n+1) e^(i(n+1)θ) −1)/(2e^(iθ) −1))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=((2^(n+1) [cos (n+1)θ+i sin (n+1)θ]−1)/(2(cos θ+i sin θ)−1))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=(({[2^(n+1) cos (n+1)θ−1]+i [2^(n+1) sin (n+1)θ]}[(2cos θ−1)−i sin θ])/([(2cos θ−1)+i sin θ][(2cos θ−1)−i sin θ]))  Σ_(k=0) ^n 2^k cos (kθ)+iΣ_(k=0) ^n 2^k sin (kθ)=(({[2^(n+1) cos (n+1)θ−1](2cos θ−1)+2^(n+1) sin (n+1)θ sin θ}+i {[2^(n+1) sin (n+1)θ](2cos θ−1)−[2^(n+1) cos (n+1)θ−1]sin θ})/((2cos θ−1)^2 +sin^2  θ))  ⇒Σ_(k=0) ^n 2^k cos (kθ)=(([2^(n+1) cos (n+1)θ−1](2cos θ−1)+2^(n+1) sin θ sin (n+1)θ)/((2cos θ−1)^2 +sin^2  θ))    ⇒Σ_(k=0) ^n 2^k sin (kθ)=((2^(n+1) (2 cos θ−1) sin (n+1)θ−[2^(n+1) cos (n+1)θ−1]sin θ)/((2cos θ−1)^2 +sin^2  θ))

z=2(cosθ+isinθ)=2eiθzk=2k(coskθ+isinkθ)=(2eiθ)kz0+z1+z2+...+zn=nk=0(2eiθ)ksumofGPnk=02kcos(kθ)+ink=02ksin(kθ)=(2eiθ)n+112eiθ1nk=02kcos(kθ)+ink=02ksin(kθ)=2n+1ei(n+1)θ12eiθ1nk=02kcos(kθ)+ink=02ksin(kθ)=2n+1[cos(n+1)θ+isin(n+1)θ]12(cosθ+isinθ)1nk=02kcos(kθ)+ink=02ksin(kθ)={[2n+1cos(n+1)θ1]+i[2n+1sin(n+1)θ]}[(2cosθ1)isinθ][(2cosθ1)+isinθ][(2cosθ1)isinθ]nk=02kcos(kθ)+ink=02ksin(kθ)={[2n+1cos(n+1)θ1](2cosθ1)+2n+1sin(n+1)θsinθ}+i{[2n+1sin(n+1)θ](2cosθ1)[2n+1cos(n+1)θ1]sinθ}(2cosθ1)2+sin2θnk=02kcos(kθ)=[2n+1cos(n+1)θ1](2cosθ1)+2n+1sinθsin(n+1)θ(2cosθ1)2+sin2θnk=02ksin(kθ)=2n+1(2cosθ1)sin(n+1)θ[2n+1cos(n+1)θ1]sinθ(2cosθ1)2+sin2θ

Commented by peter frank last updated on 22/Feb/20

thank you very much

thankyouverymuch

Terms of Service

Privacy Policy

Contact: info@tinkutara.com