Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82531 by Power last updated on 22/Feb/20

Commented by abdomathmax last updated on 24/Feb/20

I =∫ ((√(1−x))/x)dx +∫ ((√(2−x^2 ))/x)dx +∫  ((√(4−x^4 ))/x)dx we have  ∫  ((√(1−x))/x)dx  changement (√(1−x))=t give1−x=t^2  ⇒  x=1−t^2  ⇒∫  ((√(1−x))/x)dx = ∫  (t/(1−t^2 ))(−2t)dt  =∫   ((2t^2 )/(t^2 −1))dt =2∫ ((t^2 −1+1)/(t^2 −1))dt =2∫ dt +2∫  (dt/(t^2 −1))  =2t +∫ ((1/(t−1))−(1/(t+1)))dt =2t+ln∣((t−1)/(t+1))∣ +c  =2(√(1−x))+ln∣(((√(1−x))−1)/((√(1−x))+1))∣ +c  ∫  ((√(2−x^2 ))/x)dx =_(x=(√2)sint)   ∫   (((√2)cost)/((√2)sint))×(√2)costdt  =(√2)∫  ((cos^2 t)/(sint))dt =(√2)∫  ((1−sin^2 t)/(sint))dt  =(√2)∫   (dt/(sint))−(√2)∫  sint dt      =_(tan((t/2))=u)   (√2)∫  (1/((2u)/(1+u^2 )))×((2du)/(1+u^2 )) +(√2)cost  +c^′   =(√2)ln∣tan((t/2))∣+(√2)(√(1−((x/(√2)))^2 )) +c^′   =(√2)ln∣tan((1/2)arcsin((x/(√2))))∣+(√2)(√(1−(x^2 /2))) +c  ....be continued...

I=1xxdx+2x2xdx+4x4xdxwehave1xxdxchangement1x=tgive1x=t2x=1t21xxdx=t1t2(2t)dt=2t2t21dt=2t21+1t21dt=2dt+2dtt21=2t+(1t11t+1)dt=2t+lnt1t+1+c=21x+ln1x11x+1+c2x2xdx=x=2sint2cost2sint×2costdt=2cos2tsintdt=21sin2tsintdt=2dtsint2sintdt=tan(t2)=u212u1+u2×2du1+u2+2cost+c=2lntan(t2)+21(x2)2+c=2lntan(12arcsin(x2))+21x22+c....becontinued...

Answered by TANMAY PANACEA last updated on 22/Feb/20

∫((1−x)/(x(√(1−x))))dx+∫((2−x^2 )/(x(√(2−x^2 ))))dx+∫((4−x^4 )/(x(√(4−x^4 ))))dx  I_1 =∫((1−x)/(x(√(1−x^2 ))))dx  t^2 =1−x  2tdt=−dx  ∫(t^2 /((1−t^2 )t))×−2tdt  2∫((1−t^2 −1)/(1−t^2 ))dt  2∫dt−2∫(dt/(1−t^2 ))  2∫dt−[∫(dt/(1+t))+∫(dt/(1−t))]  2∫dt−∫(dt/(1+t))+∫(dt/(t−1))  2t+ln(((t−1)/(t+1)))+c_1   (√(1−x)) +ln((((√(1−x)) −1)/((√(1−x)) +1)))+c_1   I_2 =∫((2−x^2 )/(x(√(2−x^2 ))))  2∫((xdx)/(x^2 (√(2−x^2 ))))−∫((xdx)/(√(2−x^2 )))  k^2 =2−x^2 →kdk=−xdx  2∫((−kdk)/((2−k^2 )))+∫((kdk)/k)  ∫((d(2−k^2 ))/(2−k^2 ))+∫dk  ln(2−k^2 )+k+c_2   ln(x^2 )+(√(2−x^2 )) +c_2   I_3 =∫((4−x^4 )/(x(√(4−x^4 ))))dx  ∫((4xdx)/(x^2 (√(4−x^4 ))))−∫(x^3 /(√(4−x^4 )))dx  2∫((d(x^2 ))/(x^2 (√(4−x^4 ))))−(1/2)∫((x^2 ×d(x^2 ))/(√(4−x^4 )))  2∫(dp/(p(√(4−p^2 ))))−(1/2)∫((pdp)/(√(4−p^2 )))    [ p=x^2 ]  2∫((pdp)/(p^2 (√(4−p^2 ))))−(1/2)∫((pdp)/(√(4−p^2 )))  a^2 =4−p^2 →2ada=−2pdp★  [a^2 =4−p^2 =4−x^4 ]  2∫((−ada)/((4−a^2 )a))−(1/2)∫((−ada)/a)  −2∫(da/((2+a)(2−a)))+(1/2)∫da  ((−1)/2)∫((2+a+2−a)/((2+a)(2−a)))da+(1/2)∫da  ((−1)/2)∫(da/(2−a))−(1/2)∫(da/(2+a))+(1/2)∫da  (1/2)∫(da/(a−2))−(1/2)∫(da/(a+2))+(1/2)∫da  (1/2)ln(((a−2)/(a+2)))+(a/2)+c_3   (1/2)ln((((√(4−x^4 )) −2)/((√(4−x^4 )) +2)))+((√(4−x^4 ))/2)+c_3

1xx1xdx+2x2x2x2dx+4x4x4x4dxI1=1xx1x2dxt2=1x2tdt=dxt2(1t2)t×2tdt21t211t2dt2dt2dt1t22dt[dt1+t+dt1t]2dtdt1+t+dtt12t+ln(t1t+1)+c11x+ln(1x11x+1)+c1I2=2x2x2x22xdxx22x2xdx2x2k2=2x2kdk=xdx2kdk(2k2)+kdkkd(2k2)2k2+dkln(2k2)+k+c2ln(x2)+2x2+c2I3=4x4x4x4dx4xdxx24x4x34x4dx2d(x2)x24x412x2×d(x2)4x42dpp4p212pdp4p2[p=x2]2pdpp24p212pdp4p2a2=4p22ada=2pdp[a2=4p2=4x4]2ada(4a2)a12adaa2da(2+a)(2a)+12da122+a+2a(2+a)(2a)da+12da12da2a12da2+a+12da12daa212daa+2+12da12ln(a2a+2)+a2+c312ln(4x424x4+2)+4x42+c3

Commented by peter frank last updated on 22/Feb/20

thank you

thankyou

Commented by Power last updated on 22/Feb/20

thank you sir

thankyousir

Commented by TANMAY PANACEA last updated on 22/Feb/20

most welcome both of you sir...

mostwelcomebothofyousir...

Terms of Service

Privacy Policy

Contact: info@tinkutara.com