Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82560 by niroj last updated on 22/Feb/20

 Use gamma function to prove    (i) ∫_0 ^(π/4) sin^4 x 2x dx = ((3𝛑−4)/(192)).    (ii) ∫_0 ^(π/6)  cos^4 3𝛉 sin^2 6θ = ((5π)/(192)).

Usegammafunctiontoprove(i)0π4sin4x2xdx=3π4192.(ii)0π6cos43θsin26θ=5π192.

Answered by M±th+et£s last updated on 22/Feb/20

N.B:Γ(z+(1/2))=(((2z−1)!!)/2^z )(√π)    β=((Γ(x)Γ(y))/(Γ(x+y)))=∫_0 ^(π/2) cos^(2x−1) θ sin^(2x−1) θ dθ  I=∫_0 ^(π/6) cos^4 3θ sin^2 6θ dθ =^(θ→3θ)  (1/3)∫_0 ^(π/2) cos^4 θ sin^2 2θ dθ   =(4/3)∫_0 ^(π/2) cos^6 θ sin^2 θ dθ=(2/3)β((7/2),(3/2))  I=(2/3) ((Γ((7/2),(3/2)))/(Γ(5)))=(2/3) ((Γ(3+(1/2))Γ(1+(1/2)))/(Γ(5)))  =(2/3) (((((5!!)/2^3 )(√π) )(((1!!)/2^1 ) (√π) ))/(4!))=((2π)/3) (((((15)/8))((1/2)))/(24))  I=((5π)/(192))

N.B:Γ(z+12)=(2z1)!!2zπβ=Γ(x)Γ(y)Γ(x+y)=0π2cos2x1θsin2x1θdθI=0π6cos43θsin26θdθ=θ3θ130π2cos4θsin22θdθ=430π2cos6θsin2θdθ=23β(72,32)I=23Γ(72,32)Γ(5)=23Γ(3+12)Γ(1+12)Γ(5)=23(5!!23π)(1!!21π)4!=2π3(158)(12)24I=5π192

Terms of Service

Privacy Policy

Contact: info@tinkutara.com