Question and Answers Forum

All Questions      Topic List

Integration Questions

Previous in All Question      Next in All Question      

Previous in Integration      Next in Integration      

Question Number 82573 by Power last updated on 22/Feb/20

Commented by Tony Lin last updated on 22/Feb/20

let x=asecθ, dx=asecθtanθdθ  ⇒secθ=(x/a), tanθ=((√(x^2 −a^2 ))/a)  a^2 ∫tan^2 θsecθdθ  =a^2 ∫(sec^2 θ−1)secθdθ  =a^2 [∫sec^3 θdθ−∫secθdθ]  ∫sec^3 dθ  =secθtanθ−∫tan^2 θsecθdθ  =secθtanθ−∫(sec^2 θ−1)secθdθ  =secθtanθ−∫sec^3 dθ+∫secθdθ  ⇒∫sec^3 dθ  =(1/2)(secθtanθ+ln∣secθ+tanθ∣)+c  ∴a^2 ∫tan^2 θsecθdθ  =(1/2)a^2 (secθtanθ−ln∣secθ+tanθ∣)+c  =(1/2)(x(√(x^2 −a^2 ))−aln∣x+(√(x^2 −a^2 ))∣)+c

letx=asecθ,dx=asecθtanθdθsecθ=xa,tanθ=x2a2aa2tan2θsecθdθ=a2(sec2θ1)secθdθ=a2[sec3θdθsecθdθ]sec3dθ=secθtanθtan2θsecθdθ=secθtanθ(sec2θ1)secθdθ=secθtanθsec3dθ+secθdθsec3dθ=12(secθtanθ+lnsecθ+tanθ)+ca2tan2θsecθdθ=12a2(secθtanθlnsecθ+tanθ)+c=12(xx2a2alnx+x2a2)+c

Commented by mathmax by abdo last updated on 22/Feb/20

A =∫(√(x^2 −a^2 ))dx changement x=ach(t) give  A =∫∣a∣sh(t)a sh(t)dt =a∣a∣∫ sh^2 t dt  =a∣a∣ ∫  ((ch(2t)−1)/2) =((a∣a∣)/2) ∫ ch(2t)dt−((a∣a∣t)/2)  =((a∣a∣)/4)sh(2t)−((a∣a∣)/2)t +c =((a∣a∣)/2)sh(t)ch(t)−((a∣a∣)/2)t +c  =((a∣a∣)/2)(√((x^2 /a^2 )−1))×(x/a) −((a∣a∣)/2) argch((x/a))+C  =((a∣a∣)/(2∣a∣a))x(√(x^2 −a^2 )) −((a∣a∣)/2)ln((x/a)+(√((x^2 /a^2 )−1))) +C  =(x/2)(√(x^2 −a^2  ))−((a∣a∣)/2)ln((x/a)+((√(x^2 −a^2 ))/(∣a∣))) +C

A=x2a2dxchangementx=ach(t)giveA=ash(t)ash(t)dt=aash2tdt=aach(2t)12=aa2ch(2t)dtaat2=aa4sh(2t)aa2t+c=aa2sh(t)ch(t)aa2t+c=aa2x2a21×xaaa2argch(xa)+C=aa2aaxx2a2aa2ln(xa+x2a21)+C=x2x2a2aa2ln(xa+x2a2a)+C

Commented by Power last updated on 22/Feb/20

thanks

thanks

Commented by msup trace by abdo last updated on 22/Feb/20

you are welcome

youarewelcome

Terms of Service

Privacy Policy

Contact: info@tinkutara.com