All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 82667 by M±th+et£s last updated on 23/Feb/20
ifa>0b>0a⩽b showthat a2⩽(2aba+b)2⩽ab⩽(a+b2)2⩽a2+b22⩽b2
Answered by TANMAY PANACEA last updated on 23/Feb/20
b2−a2+b22 (b+a)(b−a)2>0sob2>a2+b22[equalitysivnifa=b] a2+b22−(a+b2)2 =2a2+2b2−a2−b2−2ab4→(b−a)222>0 soa2+b22>(a+b2)2 (a+b2)2−ab =(a−b)222so(a+b2)2>ab ab−(2aba+b)2 =ab×a2+2ab+b2−4ab(a+b)2→ab×(a−ba+b)2 soab>(2aba+b)2 (2aba+b)2−a2 =a2×4b2−a2−2ab−b2(a+b)2 a2(a+b)2×(3b2−3ab+ab−a2) a2(a+b)2×{3b(b−a)+a(b−a)} a2(a+b)2×(b−a)(3b+a)>0sinceb>a
Commented byM±th+et£s last updated on 23/Feb/20
godblessyousir
Commented byTANMAY PANACEA last updated on 23/Feb/20
blessingshosertoall
Terms of Service
Privacy Policy
Contact: info@tinkutara.com