Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 82667 by M±th+et£s last updated on 23/Feb/20

if a>0  b>0  a≤b    show that   a^2 ≤(((2ab)/(a+b)))^2 ≤ab≤(((a+b)/2))^2 ≤((a^2 +b^2 )/2)≤b^2

ifa>0b>0ab showthat a2(2aba+b)2ab(a+b2)2a2+b22b2

Answered by TANMAY PANACEA last updated on 23/Feb/20

b^2 −((a^2 +b^2 )/2)  (((b+a)(b−a))/2)>0  so b^2 >((a^2 +b^2 )/2)  [equality sivn if a=b]  ((a^2 +b^2 )/2)−(((a+b)/2))^2   =((2a^2 +2b^2 −a^2 −b^2 −2ab)/4)→(((b−a)^2 )/2^2 )>0  so ((a^2 +b^2 )/2)>(((a+b)/2))^2   (((a+b)/2))^2 −ab  =(((a−b)^2 )/2^2 )   so (((a+b)/2))^2 >ab  ab−(((2ab)/(a+b)))^2   =ab×((a^2 +2ab+b^2 −4ab)/((a+b)^2 ))→ab×(((a−b)/(a+b)))^2   so ab>(((2ab)/(a+b)))^2   (((2ab)/(a+b)))^2 −a^2   =a^2 ×((4b^2 −a^2 −2ab−b^2 )/((a+b)^2 ))  (a^2 /((a+b)^2 ))×(3b^2 −3ab+ab−a^2 )  (a^2 /((a+b)^2 ))×{3b(b−a)+a(b−a)}  (a^2 /((a+b)^2 ))×(b−a)(3b+a)>0  since b>a

b2a2+b22 (b+a)(ba)2>0sob2>a2+b22[equalitysivnifa=b] a2+b22(a+b2)2 =2a2+2b2a2b22ab4(ba)222>0 soa2+b22>(a+b2)2 (a+b2)2ab =(ab)222so(a+b2)2>ab ab(2aba+b)2 =ab×a2+2ab+b24ab(a+b)2ab×(aba+b)2 soab>(2aba+b)2 (2aba+b)2a2 =a2×4b2a22abb2(a+b)2 a2(a+b)2×(3b23ab+aba2) a2(a+b)2×{3b(ba)+a(ba)} a2(a+b)2×(ba)(3b+a)>0sinceb>a

Commented byM±th+et£s last updated on 23/Feb/20

god bless you sir

godblessyousir

Commented byTANMAY PANACEA last updated on 23/Feb/20

blessing shoser to all

blessingshosertoall

Terms of Service

Privacy Policy

Contact: info@tinkutara.com