Question and Answers Forum

All Questions      Topic List

Relation and Functions Questions

Previous in All Question      Next in All Question      

Previous in Relation and Functions      Next in Relation and Functions      

Question Number 82719 by john santu last updated on 23/Feb/20

If x,y ∈R satisfy in equation   x−4(√y) = 2(√(x−y)) . find range of x

$$\mathrm{If}\:\mathrm{x},{y}\:\in\mathbb{R}\:{satisfy}\:{in}\:{equation}\: \\ $$$${x}−\mathrm{4}\sqrt{{y}}\:=\:\mathrm{2}\sqrt{{x}−{y}}\:.\:{find}\:{range}\:{of}\:{x} \\ $$

Commented by MJS last updated on 23/Feb/20

4≤x≤20  I will show later  for 4≤x<16 we get 1 solution for y  for 16≤x≤20 we get 2 solutions for y

$$\mathrm{4}\leqslant{x}\leqslant\mathrm{20} \\ $$$$\mathrm{I}\:\mathrm{will}\:\mathrm{show}\:\mathrm{later} \\ $$$$\mathrm{for}\:\mathrm{4}\leqslant{x}<\mathrm{16}\:\mathrm{we}\:\mathrm{get}\:\mathrm{1}\:\mathrm{solution}\:\mathrm{for}\:{y} \\ $$$$\mathrm{for}\:\mathrm{16}\leqslant{x}\leqslant\mathrm{20}\:\mathrm{we}\:\mathrm{get}\:\mathrm{2}\:\mathrm{solutions}\:\mathrm{for}\:{y} \\ $$

Commented by TANMAY PANACEA last updated on 23/Feb/20

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Commented by john santu last updated on 24/Feb/20

thank you all

$${thank}\:{you}\:{all} \\ $$

Answered by TANMAY PANACEA last updated on 23/Feb/20

1)x≥y  2)y≥0  ★now if y=0  x=2(√x)   (√x) ((√x) −2)=0  so either x=0   or x=4  when x=0 then0  y=0  ★when x=y  x−4(√x) =0  (√x) ((√x) −4)=0  x=0  or x=16  when x=0  then y=0  let others throw light in[this problem

$$\left.\mathrm{1}\right){x}\geqslant{y} \\ $$$$\left.\mathrm{2}\right){y}\geqslant\mathrm{0} \\ $$$$\bigstar{now}\:{if}\:{y}=\mathrm{0} \\ $$$${x}=\mathrm{2}\sqrt{{x}}\: \\ $$$$\sqrt{{x}}\:\left(\sqrt{{x}}\:−\mathrm{2}\right)=\mathrm{0} \\ $$$${so}\:{either}\:{x}=\mathrm{0}\:\:\:{or}\:{x}=\mathrm{4} \\ $$$${when}\:{x}=\mathrm{0}\:{then}\mathrm{0}\:\:{y}=\mathrm{0} \\ $$$$\bigstar{when}\:{x}={y} \\ $$$${x}−\mathrm{4}\sqrt{{x}}\:=\mathrm{0} \\ $$$$\sqrt{{x}}\:\left(\sqrt{{x}}\:−\mathrm{4}\right)=\mathrm{0} \\ $$$${x}=\mathrm{0}\:\:{or}\:{x}=\mathrm{16} \\ $$$${when}\:{x}=\mathrm{0}\:\:{then}\:{y}=\mathrm{0} \\ $$$${let}\:{others}\:{throw}\:{light}\:{in}\left[{this}\:{problem}\right. \\ $$

Answered by mr W last updated on 23/Feb/20

y≥0  x≥y≥0  x≥4(√y)    x^2 −8x(√y)+16y=4(x−y)  20y−8x(√y)+x^2 −4x=0  (√y)=((2x±(√(x(20−x))))/(10))≥0  x(20−x)≥0  ⇒0≤x≤20   ...(i)    2x+(√(x(20−x)))≥0 ⇒always true  2x−(√(x(20−x)))≥0  4x^2 ≥20x−x^2   x^2 ≥4x  ⇒x≥4   ...(ii)  from (i) and (ii)we get the range of x:  4≤x≤20    x^2 −4(1+2(√y))x+20y=0  x=2(1+2(√y))±2(√(1+4(√y)−y))  1+4(√y)−y≥0  5−(2−(√y))^2 ≥0  ∣2−(√y)∣≤(√5)  −(√5)≤2−(√y)≤(√5)  (√y)≤2+(√5) ⇒y≤(2+(√5))^2 =9+4(√5)  (√y)≥2−(√5) ⇒always true with y≥0  the range of y is:  0≤y≤9+4(√5)

$${y}\geqslant\mathrm{0} \\ $$$${x}\geqslant{y}\geqslant\mathrm{0} \\ $$$${x}\geqslant\mathrm{4}\sqrt{{y}} \\ $$$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{8}{x}\sqrt{{y}}+\mathrm{16}{y}=\mathrm{4}\left({x}−{y}\right) \\ $$$$\mathrm{20}{y}−\mathrm{8}{x}\sqrt{{y}}+{x}^{\mathrm{2}} −\mathrm{4}{x}=\mathrm{0} \\ $$$$\sqrt{{y}}=\frac{\mathrm{2}{x}\pm\sqrt{{x}\left(\mathrm{20}−{x}\right)}}{\mathrm{10}}\geqslant\mathrm{0} \\ $$$${x}\left(\mathrm{20}−{x}\right)\geqslant\mathrm{0} \\ $$$$\Rightarrow\mathrm{0}\leqslant{x}\leqslant\mathrm{20}\:\:\:...\left({i}\right) \\ $$$$ \\ $$$$\mathrm{2}{x}+\sqrt{{x}\left(\mathrm{20}−{x}\right)}\geqslant\mathrm{0}\:\Rightarrow{always}\:{true} \\ $$$$\mathrm{2}{x}−\sqrt{{x}\left(\mathrm{20}−{x}\right)}\geqslant\mathrm{0} \\ $$$$\mathrm{4}{x}^{\mathrm{2}} \geqslant\mathrm{20}{x}−{x}^{\mathrm{2}} \\ $$$${x}^{\mathrm{2}} \geqslant\mathrm{4}{x} \\ $$$$\Rightarrow{x}\geqslant\mathrm{4}\:\:\:...\left({ii}\right) \\ $$$${from}\:\left({i}\right)\:{and}\:\left({ii}\right){we}\:{get}\:{the}\:{range}\:{of}\:{x}: \\ $$$$\mathrm{4}\leqslant{x}\leqslant\mathrm{20} \\ $$$$ \\ $$$${x}^{\mathrm{2}} −\mathrm{4}\left(\mathrm{1}+\mathrm{2}\sqrt{{y}}\right){x}+\mathrm{20}{y}=\mathrm{0} \\ $$$${x}=\mathrm{2}\left(\mathrm{1}+\mathrm{2}\sqrt{{y}}\right)\pm\mathrm{2}\sqrt{\mathrm{1}+\mathrm{4}\sqrt{{y}}−{y}} \\ $$$$\mathrm{1}+\mathrm{4}\sqrt{{y}}−{y}\geqslant\mathrm{0} \\ $$$$\mathrm{5}−\left(\mathrm{2}−\sqrt{{y}}\right)^{\mathrm{2}} \geqslant\mathrm{0} \\ $$$$\mid\mathrm{2}−\sqrt{{y}}\mid\leqslant\sqrt{\mathrm{5}} \\ $$$$−\sqrt{\mathrm{5}}\leqslant\mathrm{2}−\sqrt{{y}}\leqslant\sqrt{\mathrm{5}} \\ $$$$\sqrt{{y}}\leqslant\mathrm{2}+\sqrt{\mathrm{5}}\:\Rightarrow{y}\leqslant\left(\mathrm{2}+\sqrt{\mathrm{5}}\right)^{\mathrm{2}} =\mathrm{9}+\mathrm{4}\sqrt{\mathrm{5}} \\ $$$$\sqrt{{y}}\geqslant\mathrm{2}−\sqrt{\mathrm{5}}\:\Rightarrow{always}\:{true}\:{with}\:{y}\geqslant\mathrm{0} \\ $$$${the}\:{range}\:{of}\:{y}\:{is}: \\ $$$$\mathrm{0}\leqslant{y}\leqslant\mathrm{9}+\mathrm{4}\sqrt{\mathrm{5}} \\ $$

Commented by TANMAY PANACEA last updated on 23/Feb/20

thank you sir...

$${thank}\:{you}\:{sir}... \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com