Question and Answers Forum

All Questions      Topic List

Others Questions

Previous in All Question      Next in All Question      

Previous in Others      Next in Others      

Question Number 82729 by TawaTawa last updated on 23/Feb/20

Commented by Kunal12588 last updated on 23/Feb/20

In the △ABC, let G be the centroid, and let I  be the center of the inscribed circle. Let α  and β be the angles at the vertices A and B  respectively. Suppose that the segment IG ∥ AB  and that β = 2 tan^(−1) ((1/3)). Find α.

$${In}\:{the}\:\bigtriangleup{ABC},\:{let}\:{G}\:{be}\:{the}\:{centroid},\:{and}\:{let}\:{I} \\ $$$${be}\:{the}\:{center}\:{of}\:{the}\:{inscribed}\:{circle}.\:{Let}\:\alpha \\ $$$${and}\:\beta\:{be}\:{the}\:{angles}\:{at}\:{the}\:{vertices}\:{A}\:{and}\:{B} \\ $$$${respectively}.\:{Suppose}\:{that}\:{the}\:{segment}\:{IG}\:\parallel\:{AB} \\ $$$${and}\:{that}\:\beta\:=\:\mathrm{2}\:{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right).\:{Find}\:\alpha. \\ $$

Commented by TawaTawa last updated on 23/Feb/20

In the triangle ΔABC, let  G be the centroid, and let  I  be the centre of the inscribed circle. Let α and β be the  angles at the vertices A and B respectively. Suppose that  the segment  IG  is parallel to  AB  and that  β  =  2 tan^(−1) ((1/3)).  Find  α.

$$\mathrm{In}\:\mathrm{the}\:\mathrm{triangle}\:\Delta\mathrm{ABC},\:\mathrm{let}\:\:\mathrm{G}\:\mathrm{be}\:\mathrm{the}\:\mathrm{centroid},\:\mathrm{and}\:\mathrm{let}\:\:\mathrm{I} \\ $$$$\mathrm{be}\:\mathrm{the}\:\mathrm{centre}\:\mathrm{of}\:\mathrm{the}\:\mathrm{inscribed}\:\mathrm{circle}.\:\mathrm{Let}\:\alpha\:\mathrm{and}\:\beta\:\mathrm{be}\:\mathrm{the} \\ $$$$\mathrm{angles}\:\mathrm{at}\:\mathrm{the}\:\mathrm{vertices}\:\mathrm{A}\:\mathrm{and}\:\mathrm{B}\:\mathrm{respectively}.\:\mathrm{Suppose}\:\mathrm{that} \\ $$$$\mathrm{the}\:\mathrm{segment}\:\:\mathrm{IG}\:\:\mathrm{is}\:\mathrm{parallel}\:\mathrm{to}\:\:\mathrm{AB}\:\:\mathrm{and}\:\mathrm{that}\:\:\beta\:\:=\:\:\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \left(\frac{\mathrm{1}}{\mathrm{3}}\right). \\ $$$$\mathrm{Find}\:\:\alpha. \\ $$

Answered by mr W last updated on 24/Feb/20

Commented by mr W last updated on 24/Feb/20

β=2 tan^(−1) (1/3)  tan (β/2)=(1/3)  tan β=((2×(1/3))/(1−((1/3))^2 ))=(3/4)  let radius of incircle=r=1  BF=((IF)/(tan (β/2)))=(r/(1/3))=3r=3  KF=((IF)/(tan β))=(r/(3/4))=((4r)/3)=(4/3)  BK=BF−KF=3−(4/3)=(5/3)  ((CK)/(BK))=((CG)/(EG))=(2/1)  ⇒CK=2BK=((10)/3)  BC=BK+CK=(5/3)+((10)/3)=5  FC=BC−BF=5−3=2  tan (γ/2)=((IF)/(FC))=(1/2)  tan γ=((2×(1/2))/(1−((1/2))^2 ))=(4/3)=(1/(tan β))  tan β×tan γ=1  ⇒β+γ=90°  α=180°−β−γ  ⇒α=90°

$$\beta=\mathrm{2}\:\mathrm{tan}^{−\mathrm{1}} \frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{tan}\:\frac{\beta}{\mathrm{2}}=\frac{\mathrm{1}}{\mathrm{3}} \\ $$$$\mathrm{tan}\:\beta=\frac{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{3}}}{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\mathrm{3}}{\mathrm{4}} \\ $$$${let}\:{radius}\:{of}\:{incircle}={r}=\mathrm{1} \\ $$$${BF}=\frac{{IF}}{\mathrm{tan}\:\frac{\beta}{\mathrm{2}}}=\frac{{r}}{\frac{\mathrm{1}}{\mathrm{3}}}=\mathrm{3}{r}=\mathrm{3} \\ $$$${KF}=\frac{{IF}}{\mathrm{tan}\:\beta}=\frac{{r}}{\frac{\mathrm{3}}{\mathrm{4}}}=\frac{\mathrm{4}{r}}{\mathrm{3}}=\frac{\mathrm{4}}{\mathrm{3}} \\ $$$${BK}={BF}−{KF}=\mathrm{3}−\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$$\frac{{CK}}{{BK}}=\frac{{CG}}{{EG}}=\frac{\mathrm{2}}{\mathrm{1}} \\ $$$$\Rightarrow{CK}=\mathrm{2}{BK}=\frac{\mathrm{10}}{\mathrm{3}} \\ $$$${BC}={BK}+{CK}=\frac{\mathrm{5}}{\mathrm{3}}+\frac{\mathrm{10}}{\mathrm{3}}=\mathrm{5} \\ $$$${FC}={BC}−{BF}=\mathrm{5}−\mathrm{3}=\mathrm{2} \\ $$$$\mathrm{tan}\:\frac{\gamma}{\mathrm{2}}=\frac{{IF}}{{FC}}=\frac{\mathrm{1}}{\mathrm{2}} \\ $$$$\mathrm{tan}\:\gamma=\frac{\mathrm{2}×\frac{\mathrm{1}}{\mathrm{2}}}{\mathrm{1}−\left(\frac{\mathrm{1}}{\mathrm{2}}\right)^{\mathrm{2}} }=\frac{\mathrm{4}}{\mathrm{3}}=\frac{\mathrm{1}}{\mathrm{tan}\:\beta} \\ $$$$\mathrm{tan}\:\beta×\mathrm{tan}\:\gamma=\mathrm{1} \\ $$$$\Rightarrow\beta+\gamma=\mathrm{90}° \\ $$$$\alpha=\mathrm{180}°−\beta−\gamma \\ $$$$\Rightarrow\alpha=\mathrm{90}° \\ $$

Commented by TawaTawa last updated on 24/Feb/20

Wow, God bless you sir. I really appreciate your time.

$$\mathrm{Wow},\:\mathrm{God}\:\mathrm{bless}\:\mathrm{you}\:\mathrm{sir}.\:\mathrm{I}\:\mathrm{really}\:\mathrm{appreciate}\:\mathrm{your}\:\mathrm{time}. \\ $$

Commented by TawaTawa last updated on 24/Feb/20

Sir from the diagram. How is  IK  =  BE

$$\mathrm{Sir}\:\mathrm{from}\:\mathrm{the}\:\mathrm{diagram}.\:\mathrm{How}\:\mathrm{is}\:\:\mathrm{IK}\:\:=\:\:\mathrm{BE} \\ $$

Commented by mr W last updated on 24/Feb/20

why do you think IK=BE?

$${why}\:{do}\:{you}\:{think}\:{IK}={BE}? \\ $$

Commented by mr W last updated on 24/Feb/20

you can calculate IK=(√(1^2 +((4/3))^2 ))=(5/3)  and BE=((AB)/2)=(4/2)=2. therefore IK≠BE.

$${you}\:{can}\:{calculate}\:{IK}=\sqrt{\mathrm{1}^{\mathrm{2}} +\left(\frac{\mathrm{4}}{\mathrm{3}}\right)^{\mathrm{2}} }=\frac{\mathrm{5}}{\mathrm{3}} \\ $$$${and}\:{BE}=\frac{{AB}}{\mathrm{2}}=\frac{\mathrm{4}}{\mathrm{2}}=\mathrm{2}.\:{therefore}\:{IK}\neq{BE}. \\ $$

Commented by TawaTawa1 last updated on 24/Feb/20

sorry sir,  i mean  parallel to  BE.

$$\mathrm{sorry}\:\mathrm{sir},\:\:\mathrm{i}\:\mathrm{mean}\:\:\mathrm{parallel}\:\mathrm{to}\:\:\mathrm{BE}. \\ $$

Commented by mr W last updated on 24/Feb/20

It is given: IG is parallel to AB !

$${It}\:{is}\:{given}:\:{IG}\:{is}\:{parallel}\:{to}\:{AB}\:! \\ $$

Commented by TawaTawa1 last updated on 24/Feb/20

Oh, thank you sir, i appreciate.

$$\mathrm{Oh},\:\mathrm{thank}\:\mathrm{you}\:\mathrm{sir},\:\mathrm{i}\:\mathrm{appreciate}. \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com