Question and Answers Forum

All Questions      Topic List

Trigonometry Questions

Previous in All Question      Next in All Question      

Previous in Trigonometry      Next in Trigonometry      

Question Number 8273 by lepan last updated on 05/Oct/16

Express sinα+(√3)cosα in the form   Rsin(α+β) where R>0 and 0°<β<90°.  Hence solve the equation sinα+(√3)cosα=2  for 0°<α<270°.

Expresssinα+3cosαintheform Rsin(α+β)whereR>0and0°<β<90°. Hencesolvetheequationsinα+3cosα=2 for0°<α<270°.

Answered by prakash jain last updated on 05/Oct/16

sin α+(√3)cos α  =2((1/2)sin α+((√3)/2)cos α)  =2(sin (π/6)sin α+cos (π/6)cos α)  =2cos ((π/6)−α)  sin α+(√3)cos α=1  ⇒2cos ((π/6)−α)=1  ⇒cos ((π/6)−α)=(1/2)  ⇒cos ((π/6)−α)=cos (π/3)  (π/6)−α=2nπ±(π/3)  α=−2nπ+((π/6)±(π/3))= { ((2kπ+(π/2))),((2kπ−(π/6))) :}  between 0 to 270° (or 0 to ((3π)/2))  α=(π/2)or 90°

sinα+3cosα =2(12sinα+32cosα) =2(sinπ6sinα+cosπ6cosα) =2cos(π6α) sinα+3cosα=1 2cos(π6α)=1 cos(π6α)=12 cos(π6α)=cosπ3 π6α=2nπ±π3 α=2nπ+(π6±π3)={2kπ+π22kππ6 between0to270°(or0to3π2) α=π2or90°

Terms of Service

Privacy Policy

Contact: info@tinkutara.com