Question and Answers Forum

All Questions      Topic List

Mechanics Questions

Previous in All Question      Next in All Question      

Previous in Mechanics      Next in Mechanics      

Question Number 82806 by ajfour last updated on 24/Feb/20

Commented by ajfour last updated on 24/Feb/20

If released as shown by dashed  lines, subsequently find θ(x).  Assume length of rod L.

$$\mathrm{If}\:\mathrm{released}\:\mathrm{as}\:\mathrm{shown}\:\mathrm{by}\:\mathrm{dashed} \\ $$$$\mathrm{lines},\:\mathrm{subsequently}\:\mathrm{find}\:\theta\left(\mathrm{x}\right). \\ $$$$\mathrm{Assume}\:\mathrm{length}\:\mathrm{of}\:\mathrm{rod}\:\mathrm{L}. \\ $$

Answered by mr W last updated on 24/Feb/20

Commented by mr W last updated on 24/Feb/20

a=g sin θ  N=m(g cos θ−αx)  Mg ((L cos θ)/2)+Nx=((ML^2 )/3)α  Mg ((L cos θ)/2)+m(g cos θ−αx)x=((ML^2 )/3)α  ( ((ML)/2)+mx)g cos θ=(((ML^2 )/3)+mx^2 )α  α=(d^2 θ/dt^2 )=((g( ((ML)/2)+mx)cos θ)/(((ML^2 )/3)+mx^2 ))  a=(d^2 x/dt^2 )=g sin θ  x(0)=c (marked as a in diagram)  v(0)=x′(0)=0  θ(0)=0  ω(0)=θ′(0)=0  let μ=(m/M), ξ=(x/L)  (d^2 θ/dt^2 )=((g( (1/2)+μξ)cos θ)/(L((1/3)+μξ^2 )))   ...(i)  (d^2 ξ/dt^2 )=(g/L) sin θ   ...(ii)    we solve (i) and (ii) to get ξ(t) and  θ(t) (theoretically)  ......

$${a}={g}\:\mathrm{sin}\:\theta \\ $$$${N}={m}\left({g}\:\mathrm{cos}\:\theta−\alpha{x}\right) \\ $$$${Mg}\:\frac{{L}\:\mathrm{cos}\:\theta}{\mathrm{2}}+{Nx}=\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\alpha \\ $$$${Mg}\:\frac{{L}\:\mathrm{cos}\:\theta}{\mathrm{2}}+{m}\left({g}\:\mathrm{cos}\:\theta−\alpha{x}\right){x}=\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}\alpha \\ $$$$\left(\:\frac{{ML}}{\mathrm{2}}+{mx}\right){g}\:\mathrm{cos}\:\theta=\left(\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}+{mx}^{\mathrm{2}} \right)\alpha \\ $$$$\alpha=\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\frac{{g}\left(\:\frac{{ML}}{\mathrm{2}}+{mx}\right)\mathrm{cos}\:\theta}{\frac{{ML}^{\mathrm{2}} }{\mathrm{3}}+{mx}^{\mathrm{2}} } \\ $$$${a}=\frac{{d}^{\mathrm{2}} {x}}{{dt}^{\mathrm{2}} }={g}\:\mathrm{sin}\:\theta \\ $$$${x}\left(\mathrm{0}\right)={c}\:\left({marked}\:{as}\:{a}\:{in}\:{diagram}\right) \\ $$$${v}\left(\mathrm{0}\right)={x}'\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\theta\left(\mathrm{0}\right)=\mathrm{0} \\ $$$$\omega\left(\mathrm{0}\right)=\theta'\left(\mathrm{0}\right)=\mathrm{0} \\ $$$${let}\:\mu=\frac{{m}}{{M}},\:\xi=\frac{{x}}{{L}} \\ $$$$\frac{{d}^{\mathrm{2}} \theta}{{dt}^{\mathrm{2}} }=\frac{{g}\left(\:\frac{\mathrm{1}}{\mathrm{2}}+\mu\xi\right)\mathrm{cos}\:\theta}{{L}\left(\frac{\mathrm{1}}{\mathrm{3}}+\mu\xi^{\mathrm{2}} \right)}\:\:\:...\left({i}\right) \\ $$$$\frac{{d}^{\mathrm{2}} \xi}{{dt}^{\mathrm{2}} }=\frac{{g}}{{L}}\:\mathrm{sin}\:\theta\:\:\:...\left({ii}\right) \\ $$$$ \\ $$$${we}\:{solve}\:\left({i}\right)\:{and}\:\left({ii}\right)\:{to}\:{get}\:\xi\left({t}\right)\:{and} \\ $$$$\theta\left({t}\right)\:\left({theoretically}\right) \\ $$$$...... \\ $$

Commented by ajfour last updated on 24/Feb/20

I=((ML^2 )/3)  τ = Mg((L/2))cos θ+mgrcos θ             −Nr= Iα         .......(i)   gsin θ=((vdv)/dr)−ω^2 r+αr     ....(ii)  let r^� =re^(iθ)   v^� =(dr/dt)e^(iθ) +r(d/dθ)(e^(iθ) )((dθ/dt))  a^� =(d^2 r/dt^2 )e^(iθ) +2((dr/dt))((dθ/dt))(d/dθ)(e^(iθ) )          +r((dθ/dt))^2 (d^2 /dθ^2 )(e^(iθ) )+r((d^2 θ/dt^2 ))e^(iθ)    ⇒  a_θ =2ωv   ,  a_r =(d^2 r/dt^2 )−ω^2 r+αr  mgcos θ−N=2mωv       .....(iii)  Now using (iii) in (i):     Mg((L/2))cos θ+mgrcos θ      +2mωvr−mgrcos θ = Iα  ...(1)  ⇒  Mg((L/2))cos θ+2mωvr=Iα  differentiating w.r.t.   t  −Mg((L/2))((dθ/dt))sin θ  +2mαvr+2mωr((dv/dt))+2mωv^2 =I((dα/dt))  ........

$$\mathrm{I}=\frac{\mathrm{ML}^{\mathrm{2}} }{\mathrm{3}} \\ $$$$\tau\:=\:\mathrm{Mg}\left(\frac{\mathrm{L}}{\mathrm{2}}\right)\mathrm{cos}\:\theta+\mathrm{mgrcos}\:\theta \\ $$$$\:\:\:\:\:\:\:\:\:\:\:−\mathrm{Nr}=\:\mathrm{I}\alpha\:\:\:\:\:\:\:\:\:.......\left(\mathrm{i}\right)\: \\ $$$$\mathrm{gsin}\:\theta=\frac{\mathrm{vdv}}{\mathrm{dr}}−\omega^{\mathrm{2}} \mathrm{r}+\alpha\mathrm{r}\:\:\:\:\:....\left(\mathrm{ii}\right) \\ $$$$\mathrm{let}\:\bar {\mathrm{r}}=\mathrm{re}^{\mathrm{i}\theta} \\ $$$$\bar {\mathrm{v}}=\frac{\mathrm{dr}}{\mathrm{dt}}\mathrm{e}^{\mathrm{i}\theta} +\mathrm{r}\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\mathrm{e}^{\mathrm{i}\theta} \right)\left(\frac{\mathrm{d}\theta}{\mathrm{dt}}\right) \\ $$$$\bar {\mathrm{a}}=\frac{\mathrm{d}^{\mathrm{2}} \mathrm{r}}{\mathrm{dt}^{\mathrm{2}} }\mathrm{e}^{\mathrm{i}\theta} +\mathrm{2}\left(\frac{\mathrm{dr}}{\mathrm{dt}}\right)\left(\frac{\mathrm{d}\theta}{\mathrm{dt}}\right)\frac{\mathrm{d}}{\mathrm{d}\theta}\left(\mathrm{e}^{\mathrm{i}\theta} \right) \\ $$$$\:\:\:\:\:\:\:\:+\mathrm{r}\left(\frac{\mathrm{d}\theta}{\mathrm{dt}}\right)^{\mathrm{2}} \frac{\mathrm{d}^{\mathrm{2}} }{\mathrm{d}\theta^{\mathrm{2}} }\left(\mathrm{e}^{\mathrm{i}\theta} \right)+\mathrm{r}\left(\frac{\mathrm{d}^{\mathrm{2}} \theta}{\mathrm{dt}^{\mathrm{2}} }\right)\mathrm{e}^{\mathrm{i}\theta} \: \\ $$$$\Rightarrow\:\:\mathrm{a}_{\theta} =\mathrm{2}\omega\mathrm{v}\:\:\:,\:\:\mathrm{a}_{\mathrm{r}} =\frac{\mathrm{d}^{\mathrm{2}} \mathrm{r}}{\mathrm{dt}^{\mathrm{2}} }−\omega^{\mathrm{2}} \mathrm{r}+\alpha\mathrm{r} \\ $$$$\mathrm{mgcos}\:\theta−\mathrm{N}=\mathrm{2m}\omega\mathrm{v}\:\:\:\:\:\:\:.....\left(\mathrm{iii}\right) \\ $$$$\mathrm{Now}\:\mathrm{using}\:\left(\mathrm{iii}\right)\:\mathrm{in}\:\left(\mathrm{i}\right): \\ $$$$\:\:\:\mathrm{Mg}\left(\frac{\mathrm{L}}{\mathrm{2}}\right)\mathrm{cos}\:\theta+\mathrm{mgrcos}\:\theta \\ $$$$\:\:\:\:+\mathrm{2m}\omega\mathrm{vr}−\mathrm{mgrcos}\:\theta\:=\:\mathrm{I}\alpha\:\:...\left(\mathrm{1}\right) \\ $$$$\Rightarrow\:\:\mathrm{Mg}\left(\frac{\mathrm{L}}{\mathrm{2}}\right)\mathrm{cos}\:\theta+\mathrm{2m}\omega\mathrm{vr}=\mathrm{I}\alpha \\ $$$$\mathrm{differentiating}\:\mathrm{w}.\mathrm{r}.\mathrm{t}.\:\:\:\mathrm{t} \\ $$$$−\mathrm{Mg}\left(\frac{\mathrm{L}}{\mathrm{2}}\right)\left(\frac{\mathrm{d}\theta}{\mathrm{dt}}\right)\mathrm{sin}\:\theta \\ $$$$+\mathrm{2m}\alpha\mathrm{vr}+\mathrm{2m}\omega\mathrm{r}\left(\frac{\mathrm{dv}}{\mathrm{dt}}\right)+\mathrm{2m}\omega\mathrm{v}^{\mathrm{2}} =\mathrm{I}\left(\frac{\mathrm{d}\alpha}{\mathrm{dt}}\right) \\ $$$$........ \\ $$$$ \\ $$

Commented by mr W last updated on 24/Feb/20

you are right, thanks sir!  i found no way to solve the equations.

$${you}\:{are}\:{right},\:{thanks}\:{sir}! \\ $$$${i}\:{found}\:{no}\:{way}\:{to}\:{solve}\:{the}\:{equations}. \\ $$

Commented by ajfour last updated on 24/Feb/20

sir in the 3^(rd)  line , should be    Nx  instead of Nxcos θ.

$$\mathrm{sir}\:\mathrm{in}\:\mathrm{the}\:\mathrm{3}^{\mathrm{rd}} \:\mathrm{line}\:,\:\mathrm{should}\:\mathrm{be}\:\: \\ $$$$\mathrm{Nx}\:\:\mathrm{instead}\:\mathrm{of}\:\mathrm{Nxcos}\:\theta. \\ $$

Commented by mr W last updated on 24/Feb/20

(dξ/dt)=ω(dξ/dθ)  (d^2 ξ/dt^2 )=α(dξ/dθ)+ω^2 (d^2 ξ/dθ^2 )  ((g( (1/2)+μξ)cos θ)/(L((1/3)+μξ^2 )))×(dξ/dθ)+ω^2 (d^2 ξ/dθ^2 )=(g/L) sin θ   ω(dω/dθ)=((g( (1/2)+μξ)cos θ)/(L((1/3)+μξ^2 )))    ω^2 =2∫_0 ^θ ((g( (1/2)+μξ)cos θ)/(L((1/3)+μξ^2 )))dθ  ⇒2∫_0 ^θ ((( (1/2)+μξ)cos θ)/(((1/3)+μξ^2 )))dθ×(d^2 ξ/dθ^2 )+((( (1/2)+μξ)cos θ)/(((1/3)+μξ^2 )))×(dξ/dθ)=sin θ

$$\frac{{d}\xi}{{dt}}=\omega\frac{{d}\xi}{{d}\theta} \\ $$$$\frac{{d}^{\mathrm{2}} \xi}{{dt}^{\mathrm{2}} }=\alpha\frac{{d}\xi}{{d}\theta}+\omega^{\mathrm{2}} \frac{{d}^{\mathrm{2}} \xi}{{d}\theta^{\mathrm{2}} } \\ $$$$\frac{{g}\left(\:\frac{\mathrm{1}}{\mathrm{2}}+\mu\xi\right)\mathrm{cos}\:\theta}{{L}\left(\frac{\mathrm{1}}{\mathrm{3}}+\mu\xi^{\mathrm{2}} \right)}×\frac{{d}\xi}{{d}\theta}+\omega^{\mathrm{2}} \frac{{d}^{\mathrm{2}} \xi}{{d}\theta^{\mathrm{2}} }=\frac{{g}}{{L}}\:\mathrm{sin}\:\theta\: \\ $$$$\omega\frac{{d}\omega}{{d}\theta}=\frac{{g}\left(\:\frac{\mathrm{1}}{\mathrm{2}}+\mu\xi\right)\mathrm{cos}\:\theta}{{L}\left(\frac{\mathrm{1}}{\mathrm{3}}+\mu\xi^{\mathrm{2}} \right)} \\ $$$$ \\ $$$$\omega^{\mathrm{2}} =\mathrm{2}\int_{\mathrm{0}} ^{\theta} \frac{{g}\left(\:\frac{\mathrm{1}}{\mathrm{2}}+\mu\xi\right)\mathrm{cos}\:\theta}{{L}\left(\frac{\mathrm{1}}{\mathrm{3}}+\mu\xi^{\mathrm{2}} \right)}{d}\theta \\ $$$$\Rightarrow\mathrm{2}\int_{\mathrm{0}} ^{\theta} \frac{\left(\:\frac{\mathrm{1}}{\mathrm{2}}+\mu\xi\right)\mathrm{cos}\:\theta}{\left(\frac{\mathrm{1}}{\mathrm{3}}+\mu\xi^{\mathrm{2}} \right)}{d}\theta×\frac{{d}^{\mathrm{2}} \xi}{{d}\theta^{\mathrm{2}} }+\frac{\left(\:\frac{\mathrm{1}}{\mathrm{2}}+\mu\xi\right)\mathrm{cos}\:\theta}{\left(\frac{\mathrm{1}}{\mathrm{3}}+\mu\xi^{\mathrm{2}} \right)}×\frac{{d}\xi}{{d}\theta}=\mathrm{sin}\:\theta\: \\ $$

Commented by ajfour last updated on 24/Feb/20

Thanks sir, bringing it as far, but  let us rather focus on something  smoother..

$$\mathrm{Thanks}\:\mathrm{sir},\:\mathrm{bringing}\:\mathrm{it}\:\mathrm{as}\:\mathrm{far},\:\mathrm{but} \\ $$$$\mathrm{let}\:\mathrm{us}\:\mathrm{rather}\:\mathrm{focus}\:\mathrm{on}\:\mathrm{something} \\ $$$$\mathrm{smoother}.. \\ $$

Commented by mr W last updated on 24/Feb/20

yes sir!  what′s about Q81968? can you post  your solution sir?

$${yes}\:{sir}! \\ $$$${what}'{s}\:{about}\:{Q}\mathrm{81968}?\:{can}\:{you}\:{post} \\ $$$${your}\:{solution}\:{sir}? \\ $$

Terms of Service

Privacy Policy

Contact: info@tinkutara.com