All Questions Topic List
Algebra Questions
Previous in All Question Next in All Question
Previous in Algebra Next in Algebra
Question Number 82877 by M±th+et£s last updated on 25/Feb/20
1)findxy∈R2)findx,y∈Z(x+2yi)6=8i
Commented by mr W last updated on 25/Feb/20
letz=x+2yiz6=8i=(2)6eπ2i⇒z=2e(π12+kπ3)i(k=0,1,2,...,5)k=0:z=2e(π12)i=3+12+3−12ix=3+12y=3−14k=1:z=2e(π12+π3)i=3−12+3+12ix=3−12y=3+14k=2:z=2e(π12+2π3)i=−1+ix=−1y=12k=3:z=2e(π12+3π3)i=−3−12+−3+12ix=−3+12y=−3−14k=4:z=2e(π12+4π3)i=−3+12+−3−12ix=−3−12y=−3+14k=5:z=2e(π12+5π3)i=1−ix=1y=−12forx,y∈Cx+2yi=zxandycannotbeuniquelydetermined.
Answered by mind is power last updated on 25/Feb/20
⇒(x−2yi)6=−8i⇒(x2+4y2)6=64⇒x2+4y2=2⇒x=2cos(θ)y=12sin(θ)θ∈[0,2π]⇒8(ei6θ)=8i⇒6θ=π2+2kπ⇒θ∈π12+kπ3,k∈{0,......5}x=2cos(θ),y=sin(θ)2,θ∈{π12+kπ3,0⩽k⩽5}
Terms of Service
Privacy Policy
Contact: info@tinkutara.com