Question and Answers Forum

All Questions      Topic List

Algebra Questions

Previous in All Question      Next in All Question      

Previous in Algebra      Next in Algebra      

Question Number 82877 by M±th+et£s last updated on 25/Feb/20

1)find xy∈R  2)find x,y∈Z  (x+2yi)^6 =8i

1)findxyR2)findx,yZ(x+2yi)6=8i

Commented by mr W last updated on 25/Feb/20

let z=x+2yi  z^6 =8i=((√2))^6 e^((π/2)i)   ⇒z=(√2)e^(((π/(12))+((kπ)/3))i)   (k=0,1,2,...,5)  k=0:  z=(√2)e^(((π/(12)))i) =(((√3)+1)/2)+(((√3)−1)/2)i  x=(((√3)+1)/2)  y=(((√3)−1)/4)    k=1:  z=(√2)e^(((π/(12))+(π/3))i) =(((√3)−1)/2)+(((√3)+1)/2)i  x=(((√3)−1)/2)  y=(((√3)+1)/4)    k=2:  z=(√2)e^(((π/(12))+((2π)/3))i) =−1+i  x=−1  y=(1/2)    k=3:  z=(√2)e^(((π/(12))+((3π)/3))i) =((−(√3)−1)/2)+((−(√3)+1)/2)i  x=−(((√3)+1)/2)  y=−(((√3)−1)/4)    k=4:  z=(√2)e^(((π/(12))+((4π)/3))i) =((−(√3)+1)/2)+((−(√3)−1)/2)i  x=−(((√3)−1)/2)  y=−(((√3)+1)/4)    k=5:  z=(√2)e^(((π/(12))+((5π)/3))i) =1−i  x=1  y=−(1/2)    for x,y ∈C  x+2yi=z  x and y can not be uniquely determined.

letz=x+2yiz6=8i=(2)6eπ2iz=2e(π12+kπ3)i(k=0,1,2,...,5)k=0:z=2e(π12)i=3+12+312ix=3+12y=314k=1:z=2e(π12+π3)i=312+3+12ix=312y=3+14k=2:z=2e(π12+2π3)i=1+ix=1y=12k=3:z=2e(π12+3π3)i=312+3+12ix=3+12y=314k=4:z=2e(π12+4π3)i=3+12+312ix=312y=3+14k=5:z=2e(π12+5π3)i=1ix=1y=12forx,yCx+2yi=zxandycannotbeuniquelydetermined.

Answered by mind is power last updated on 25/Feb/20

⇒(x−2yi)^6 =−8i  ⇒(x^2 +4y^2 )^6 =64  ⇒x^2 +4y^2 =2  ⇒x=(√2)cos(θ)  y=(1/(√2))sin(θ)  θ∈[0,2π]  ⇒8(e^(i6θ) )=8i  ⇒6θ=(π/2)+2kπ⇒θ∈(π/(12))+((kπ)/3),k∈{0,......5}  x=(√2)cos(θ),y=((sin(θ))/(√2)),θ∈{(π/(12))+((kπ)/3),0≤k≤5}

(x2yi)6=8i(x2+4y2)6=64x2+4y2=2x=2cos(θ)y=12sin(θ)θ[0,2π]8(ei6θ)=8i6θ=π2+2kπθπ12+kπ3,k{0,......5}x=2cos(θ),y=sin(θ)2,θ{π12+kπ3,0k5}

Terms of Service

Privacy Policy

Contact: info@tinkutara.com